PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and Numerical Analyses of Steel-timber Composite Beams with LVL Slabs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently conducted studies have shown that significant benefits are to be gained by joining steel beams and timber slabs. Steel-timber composite beams present a sustainable solution for the construction industry because of their high strength and stiffness, and lower carbon footprint and self-weight than steel-concrete composite beams. The behaviour of steel-timber composite beams is still being investigated to reduce knowledge gaps. This paper presents theoretical and numerical analyses of steel-timber composite beams consisting of steel girders and laminated veneer lumber slabs. The elastic and plastic resistance to bending were estimated analytically based on the elastic analysis and the rigid-plastic theory. The impact of the composite action, the LVL slab thickness, the cross-section of a steel girder and the steel grade on resistance to bending was evaluated. The load-deflection curve of the composite beam was obtained using a 2D finite element model, in which timber failure was captured using the Hashin damage model. The results of the numerical simulation were in good agreement with the ones of the theoretical analyses.
Rocznik
Strony
64--84
Opis fizyczny
Bibliogr. 70 poz., il., tab., wykr.
Twórcy
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
Bibliografia
  • 1. Nawrot, J 2023. Perspektywy rozwoju rozwiązań materiałowo-konstrukcyjnych belek zespolonych w świetle najnowszych badań. XIII Konferencja Naukowa Konstrukcje Zespolone 2023, Zielona Góra, 29-30 czerwca 2023, Poland, 31-32. (In Polish)
  • 2. Puettmann, M, Pierobon, F, Ganguly, I, Gu, H, Chen, C, Liang, S, Jones, S, Maples, I and Wishnie, M 2021. Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration. Sustainability 13, 13987. https://doi.org/10.3390/su132413987.
  • 3. Ramage, MH, Burridge, H, Busse-Wicher, M, Fereday, G, Reynolds, T, Shah, DU, Wu, G, Yu, L, Fleming, P, Densley-Tingley, D, Allwood, J, Dupree, P, Linden, PF and Scherman, O 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68, Part 1, 333-359. https://doi.org/10.1016/j.rser.2016.09.107.
  • 4. Yadav, R and Kumar, J 2022. Engineered Wood Products as a Sustainable Construction Material: A Review. In: Gong, M (ed) Engineered Wood Products for Construction, IntechOpen. https://doi.org/10.5772/intechopen.99597.
  • 5. Chybiński, M and Polus, Ł 2021. Experimental and numerical investigations of laminated veneer lumber panels. Archives of Civil Engineering 67, 351-372. https://doi.org/10.24425/ace.2021.138060.
  • 6. Komorowski, M 2017. Podręcznik Projektowania i Budowania w Systemie STEICO. Podstawy. Fizyka Budowli. Zalecenia Wykonawcze. Warsaw: Forestor Communication. (In Polish)
  • 7. Li, M, He, M and Li, Z. 2023. Size effects on the bending strength of Chinese larch pine laminated veneer lumber. European Journal of Wood and Wood Products 81, 1211-1222. https://doi.org/10.1007/s00107-023-01933-8.
  • 8. Bakalarz, MM and Kossakowski, PG 2022. Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets. Materials 15, 6526. https://doi.org/10.3390/ma15196526.
  • 9. Chybiński, M, Polus, Ł and Szumkuć, W 2021. Zastosowanie drewna klejonego warstwowo z fornirów LVL w budownictwie. Przegląd Budowlany 5-6, 44-50. (In Polish)
  • 10. Dobes, P, Lokaj, A, Ponistova, L and Papesch, R 2019. Bending stiffness of selected types of glued I-beams made of wood-based materials. ARPN Journal of Engineering and Applied Sciences 2019, 14(7), 1357-1361.
  • 11. Rodacki, K 2017. The load-bearing capacity of timber-glass composite I-beams made with polyurethane adhesives. Civil and Environmental Engineering Reports 27(4), 105-120. https://doi.org/10.1515/ceer-2017-0054.
  • 12. Kozłowski, M and Hulimka J. 2014. Load-bearing capacity of hybrid timber-glass beams. Architecture, Civil Engineering, Environment 7(2), 61-71.
  • 13. Ganowicz, R and Plenzler, R. 1978. Zbrojone stalą belki drewniane – badania i realizacja obiektu prototypowego. Sympozjum nt. „Badania nad zastosowaniem drewna i materiałów drewnopochodnych we współczesnych konstrukcjach budowlanych”, Szczecin, Poland. (In Polish)
  • 14. Rajczyk, M and Stachecki, B. 2011. Przegląd rozwiązań konstrukcyjnych wzmacniania belek z drewna klejonego zbrojeniem w postaci prętów. Zeszyty Naukowe Politechniki Częstochowskiej, Budownictwo, z. 17(167), 186-195. (In Polish)
  • 15. Jasieńko, J. 1988. Opracowanie metod wzmacniania konstrukcji drewnianych przy zastosowaniu żywic syntetycznych, Etap I. Raport Instytutu Budownictwa Politechniki Wrocławskiej. Wrocław, Poland. (In Polish) 16. Jasieńko, J. 1989. Opracowanie metod wzmacniania konstrukcji drewnianych przy zastosowaniu żywic syntetycznych, Etap II. Raport Instytutu Budownictwa Politechniki Wrocławskiej, Wrocław, Poland. (In Polish)
  • 17. Jasieńko, J. 2003. Połączenia klejowe i inżynierskie w naprawie, konserwacji i wzmacnianiu zabytkowych konstrukcji drewnianych. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne. (In Polish).
  • 18. Nowak, T. 2007. Analiza pracy statycznej zginanych belek drewnianych wzmacnianych przy użyciu CFRP. PhD Thesis. Wroclaw University of Technology. (In Polish) 19. Rapp, P. 2015. Metodyka i przykłady rewaloryzacji konstrukcji drewnianych w obiektach zabytkowych. Wiadomości Konserwatorskie 43, 92-108. https://doi.org/10.17425/WK43WOODENSTRUCT.
  • 20. Abramowicz, M, Berczyński, S and Wróblewski, T. 2020. Modelling and parameter identification of steel–concrete composite beams in 3D rigid finite element method. Archives of Civil and Mechanical Engineering 20, 103. https://doi.org/10.1007/s43452-020-00100-7.
  • 21. Grzeszykowski, B and Szmigiera, E. 2019. Nonlinear longitudinal shear distribution in steel concrete composite beams. Archives of Civil Engineering 65(1), 65-82, https://doi.org/10.2478/ace.2019-0005.
  • 22. Aspila, A, Heinisuo, M, Mela, K, Malaska, M and Pajunen, S. 2022. Elastic design of steel-timber composite beams. Wood Material Science & Engineering 17(4), 243-252. https://doi.org/10.1080/17480272.2022.2093128.
  • 23. Chybiński, M, Polus, Ł, Szwabiński, W and Niewiem, P. 2019. FE analysis of steel-timber composite beams. AIP Conference Proceedings 2078(1), 020061. https://doi.org/10.1063/1.5092064.
  • 24. Lacki, P, Derlatka, A, Kasza, P and Gao, S. Numerical study of stee-concrete composite beam with composite dowels connectors. Computers & Structures 255, 106618. https://doi.org/10.1016/j.compstruc.2021.106618.
  • 25. Lacki, P, Nawrot, J, Derlatka, A and Winowiecka, J. 2019. Numerical and experimental tests of steel-concrete composite beam with the connector made of top-hat profile. Composite Structures 211, 244-253. https://doi.org/10.1016/j.compstruct.2018.12.035.
  • 26. Tharmabala, T and Bakht, B 1984. Steel-wood composite bridge. 12th IABSE Congress, Vancouver, BC, Canada, 3-7 September, 1984, https://doi.org/10.5169/seals-12263.
  • 27. Bakht, B and Krisciunas, R 1997. Testing a Prototype Steel-Wood Composite Bridge. Structural Engineering International 7(1), 35-41. https://doi.org/10.2749/101686697780495391.
  • 28. Chiniforush, AA, Akbarnezhad, A, Valipour, H and Malekmohammadi, S 2019. Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials 207, 70-83. https://doi.org/10.1016/j.conbuildmat.2019.02.114.
  • 29. EN 1993-1-1; Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization: Brussels, Belgium, 2005.
  • 30. Mróz, K, Hager, I and Korniejenko, K 2016. Material solutions for passive fire protection of buildings and structures and their performances testing. Procedia Engineering 151, 284-291. https://doi.org/10.1016/j.proeng.2016.07.388.
  • 31. Riola-Parada, F 2016. Timber-steel hybrid beams for multi-storey buildings. Ph.D. Thesis, TU Wien. 32. Chybiński, M and Polus, Ł 2018. Bending resistance of metal-concrete composite beams in a natural fire. Civil and Environmental Engineering Reports 4(28), 149-162. https://doi.org/10.2478/ceer 2018-0058.
  • 33. Barber, D, Blount, D, Hand, JJ, Roelofs, M, Wingo, L, Woodson, J and Yang, F. 2022. Design Guide 37: Hybrid Steel Frames with Wood Floors. American Institute of Steel Construction.
  • 34. Chybiński, M and Polus, Ł 2019. Theoretical, experimental and numerical study of aluminium timber composite beams with screwed connections. Construction and Building Materials 226, 317- 330. https://doi.org/10.1016/j.conbuildmat.2019.07.101.
  • 35. Chybiński, M, Polus, Ł and Szumigała, M 2022. Aluminium members in composite structures – a review. Archives of Civil Engineering 4, 253-274. https://doi.org/10.24425/ace.2022.143037.
  • 36. Gardner, L 2005. The use of stainless steel in structures. Progress in Structural Engineering and Materials 7(2), 45-55. https://doi.org/10.1002/pse.190.
  • 37. Gardner, L and Baddoo, NR 2006. Fire testing and design of stainless steel structures. Journal of Constructional Steel Research 62(6), 532-543, https://doi.org/10.1016/j.jcsr.2005.09.009.
  • 38. Gardner, L 2007. Stainless steel structures in fire. Proceedings of the Institution of Civil Engineers - Structures and Buildings 160(3), 129-138. https://doi.org/10.1680/stbu.2007.160.3.129
  • 39. Kyvelou, P, Gardner, L and Nethercot, DA 2017. Design of Composite Cold-Formed Steel Flooring Systems. Structures 12, 242-252, https://doi.org/10.1016/j.istruc.2017.09.006. 40. Stiemer, S, Tefamariam, S, Karacabeyli, E and Popovski, M 2012. Development of steel-wood hybrid systems for buildings under dynamic loads. Behaviour of Steel Structures in Seismic Areas STESSA 2012, January 9-11, Santiago, Chile.
  • 41. Wang, X, Su, P, Liu, J, Chen, Z and Khan, K 2022. Seismic performance of light steel-natural timber composite beam-column joint in low-rise buildings. Engineering Structures 256, 113969. https://doi.org/10.1016/j.engstruct.2022.113969.
  • 42. Kyvelou, P, Gardner, L and Nethercot DA 2018. Finite element modelling of composite cold-formed steel flooring systems. Engineering Structures 158, 28-42, https://doi.org/10.1016/j.engstruct.2017.12.024.
  • 43. Hassanieh, A, Valipour, HR and Bradford, MA 2016. Experimental and numerical study of steel timber composite (STC) beams. Journal of Constructional Steel Research 122, 367-378, https://doi.org/10.1016/j.jcsr.2016.04.005.
  • 44. Liu, R, Liu, J, Wu, Z, Chen, L and Wang, J 2022. A Study on the Influence of Bolt Arrangement Parameters on the Bending Behavior of Timber–Steel Composite (TSC) Beams. Buildings 12(11), 2013, https://doi.org/10.3390/buildings12112013.
  • 45. Szewczak, I, Rzeszut, K and Rozylo, P 2021. Structural behaviour of steel cold-formed sigma beams strengthened with bonded steel tapes. Thin-Walled Structures 159, 107295. https://doi.org/10.1016/j.tws.2020.107295.
  • 46. Chybiński, M and Garstecki, A 2017. Diagonal versus orthogonal ribs in stability of steel I beams. Procedia Engineering 172, 172-177. https://doi.org/10.1016/j.proeng.2017.02.046.
  • 47. Derlatka, A. 2023. Analiza kompozytowej belki stalowo-OSB. XIII Konferencja Naukowa Konstrukcje Zespolone 2023, Zielona Góra, 29-30 czerwca 2023, Poland, 59-60. (In Polish)
  • 48. Awaludin, A, Rachmawati, K, Aryati, M and Danastri, AD 2015. Development of Cold Formed Steel – Timber Composite for Roof Structures: Compression Members. Procedia Engineering 125, 850-856, https://doi.org/10.1016/j.proeng.2015.11.052.
  • 49. Vella, N, Kyvelou, P, Buhagiar, S and Gardner, L 2023. Innovative shear connectors for composite cold-formed steel-timber structures: An experimental investigation. Engineering Structures 287, 116120. https://doi.org/10.1016/j.engstruct.2023.116120.
  • 50. Hassanieh, A, Valipour, HR and Bradford, MA 2016. Experimental and analytical behaviour of steel-timber composite connections. Construction and Building Materials 118, 63-75. https://doi.org/10.1016/j.conbuildmat.2016.05.052.
  • 51. Hassanieh, A, Valipour, HR and Bradford, MA 2016. Load-slip behaviour of steel-cross laminated timber (CLT) composite connections, Journal of Constructional Steel Research 122, 110-121, https://doi.org/10.1016/j.jcsr.2016.03.008.
  • 52. Ataei, A, Chiniforush, AA, Bradford, MA, Valipour, HR and Ngo, TD 2022. Behaviour of embedded bolted shear connectors in steel-timber composite beams subjected to cyclic loading. Journal of Building Engineering 54, 104581. https://doi.org/10.1016/j.jobe.2022.104581.
  • 53. Zhao, Y, Yuan, Y, Wang, C-L and Meng, S 2023. Experimental and finite element analysis of flexural performance of steel-timber composite beams connected by hybrid-anchored screws. Engineering Structures 292, 116503. https://doi.org/10.1016/j.engstruct.2023.116503. 54. Zhou, Y, Zhao, Y, Wang, C-L, Zhou, Y and Zheng, J 2022. Experimental study of the shear performance of H-shaped aluminum-timber composite connections. Construction and Building Materials 334, 127421. https://doi.org/10.1016/j.conbuildmat.2022.127421.
  • 55. Chybiński, M and Polus, Ł 2022 Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates. Materials 15, 68. https://doi.org/10.3390/ma15010068. 56. Romero, A, Yang, J, Hanus, F and Odenbreit, C 2022. Numerical Investigation of Steel-LVL Timber Composite Beams. ce/papers 5, 21-30. https://doi.org/10.1002/cepa.1694.
  • 57. Loss, C and Davison, B. 2017. Innovative composite steel-timber floors with prefabricated modular components. Engineering Structures 132, 695-713. https://doi.org/10.1016/j.engstruct.2016.11.062.
  • 58. Bradford, MA, Hassanieh, A, Valipour, HR and Foster, SJ 2017. Sustainable Steel-timber Joints for Framed Structures. Procedia Engineering 172, 2-12. https://doi.org/10.1016/j.proeng.2017.02.011.
  • 59. Abed, J, Rayburg, S, Rodwell, J and Neave, M 2022. A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures. Sustainability 14, 5570. https://doi.org/10.3390/su14095570.
  • 60. EN 1994-1-1; Eurocode 4, Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
  • 61. Strzelecka, J 2023. An analysis of the load bearing capacity and stiffness of steel – timber composite beams with steel I-beams and laminated veneer lumber (LVL) slabs. Master Thesis. Poznan University of Technology. (In Polish)
  • 62. Kozłowski, A 2017. Podręcznik projektowania konstrukcji ze stali nierdzewnych. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej. (In Polish)
  • 63. Chybiński, M and Polus, Ł 2021. Experimental and numerical investigations of aluminium-timber composite beams with bolted connections. Structures 34, 1942-1960. https://doi.org/10.1016/j.istruc.2021.08.111.
  • 64. Chybiński, M and Polus, Ł 2023. Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections. Applied Sciences 13, 1603. https://doi.org/10.3390/app13031603.
  • 65. Szewczyk, P and Szumigała, M 2021. Optimal Design of Steel-Concrete Composite Beams Strengthened under Load. Materials 14, 4715. https://doi.org/10.3390/ma14164715. 66. Pełka-Sawenko, A, Wróblewski, T and Szumigała, M 2016. Validation of Computational Models of Steel-Concrete Composite Beams. Engineering Transactions 64(1), 53-67.
  • 67. Alawdin, P and Urbańska, K 2011. Limit analysis of steel-concrete composite structures with slip. Civil and Environmental Engineering Reports 7, 19-34.
  • 68. Dorn, M, Habrová, K, Koubek, R and Serrano, E 2020. Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads. Friction. https://doi.org/10.1007/s40544-020-0377-0.
  • 69. Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.
  • 70. Rozylo, P 2021. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures 262, 113598. https://doi.org/10.1016/j.compstruct.2021.113598.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84601296-6810-42f2-88cc-b611da382e7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.