PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Floor acceleration amplification and response spectra of reinforced concrete frame structure based on shaking table tests and numerical study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the seismic design of acceleration-sensitive nonstructural components, floor acceleration response spectra are commonly selected for analysis, which has proven to be effective in practice. To accurately study the floor acceleration response spectrum of a reinforced concrete structure under earthquakes, a 3-story reinforced concrete frame structure designed based on Chinese codes was built and placed on a shaking table for testing to obtain actual floor acceleration response for investigation of spectral characteristics. In addition, a set of finite element models of reinforced concrete frame buildings were analyzed to better study the variation of floor acceleration peaks and response spectra with different modal periods. The results show that floor dynamic magnification is highly related to structural dynamic characteristics and building’s relative height. Obvious peaks are observed in the floor response spectrum, which correspond to the structural modal periods. The values of the spectra, particularly the peaks, show a strong correlation with the floor level and the damping ratios of nonstructural components. Based on the observations gained from shaking table tests and numerical study, a function for predicting the floor dynamic magnification factor and a method for generating the spectral amplification factor of the floor are proposed. Then the findings acquired from the test, numerical study, and existing methods were applied for the validation of the proposed methods. It is shown that the proposed floor dynamic magnification factor prediction function and spectral amplification factor prediction method are useful for the seismic design of nonstructural components in various reinforced concrete structures, taking into account the structural dynamic characteristics, the floor level, and the damping ratio of nonstructural components.
Rocznik
Strony
art. no. e156, 2023
Opis fizyczny
Bibliogr. 51 poz., fot., rys., wykr.
Twórcy
  • School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
autor
  • School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
autor
  • School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
autor
  • School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Bibliografia
  • 1. Miranda E, Mosqueda G, Retamales R, Pekcan G. Performance of nonstructural components during the 27 February 2010 Chile earthquake. Earthq Spectra. 2012;28:S453–71. https://doi.org/10. 1193/1.4000032.
  • 2. Wang Y, Yang WG. Floor response spectral analysis and fitting of museum building before and after isolation. Proc Inst Civil Eng Struct Build. 2021;174:615–26. https:// doi. org/ 10. 1007/ s10518-015-9846-7.
  • 3. Sboras S, Dourakopoulos JA, Mouzakiotis E. Seismic hazard assessment for the protection of cultural heritage in Greece: methodological approaches for national and local scale assessment (pilot areas of Aighio, Kalamata and Heraklion). Ann Geophys Italy. 2017. https://doi.org/10.4401/ag-7154.
  • 4. Perrone D, Calvi PM, Nascimbene R, Fischer EC, Magliulo G. Seismic performance of non-structural elements during the 2016 Central Italy earthquake. B Earthq Eng. 2019;17:5655–77. https:// doi.org/10.1007/s10518-018-0361-5.
  • 5. Gautam D, Adhikari R, Rupakhety R. Seismic fragility of struc- tural and non-structural elements of Nepali RC buildings. Eng Struct. 2021. https://doi.org/10.1016/j.engstruct.2021.111879.
  • 6. Yn B, Onat O, Oncu ME. Earthquake damage to nonstructural elements of reinforced concrete buildings during 2011 van seismic sequence. J Perform Constr Facil. 2019;33:04019075. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001341.
  • 7. Filiatrault A, Sullivan T. Performance-based seismic design of nonstructural building components: the next frontier of earth- quake engineering. Earthq Eng Eng Vib. 2014;13(S1):17–46. https://doi.org/10.1007/s11803-014-0238-9.
  • 8. Fajfar P. A nonlinear analysis method for performance-based seismic design. Earthq Spectra. 2000;16(3):573–92. https://doi. org/10.1193/1.1586128.
  • 9. Malaga-Chuquitaype C, Psaltakis ME, Kampas G, Wu K. Dimensionless fragility analysis of seismic accel- eration demands through low-order building models. B Earthq Eng. 2019;17(7):3815–45. https:// doi. org/ 10. 1007/ s10518-019-00615-2.
  • 10. Pal A, Gupta VK. Peak factor-based modal combination rule of response-spectrum method for peak floor accelerations. J Struct Eng. 2021. https://doi.org/10.1061/(ASCE)ST.1943-541X.00030 44.
  • 11. Anajafi H, Medina RA, Santini-Bell E. Inelastic floor spectra for designing anchored acceleration-sensitive nonstructural compo- nents. B Earthq Eng. 2020;18(5):2115–47. https:// doi. org/ 10. 1007/s10518-019-00760-8.
  • 12. Petrone C, Magliulo G, Manfredi G. Floor response spectra in RC frame structures designed according to Eurocode 8. B Earthq Eng. 2016;14(3):747–67. https://doi.org/10.1007/s10518-015-9846-7.
  • 13. Peters KA, Schmitz D, Wagner U. Determination of floor response spectra on basis of response spectrum method. Nucl Eng Des. 1977;44(2):255–62. https://doi.org/10.1063/1.4993403.
  • 14. Zhou Y, Xie WC. The generation of uniform hazard Floor response spectra. Soil Dyn Earthq Eng. 2022. https://doi.org/10. 1016/j.soildyn.2022.107383.
  • 15. Anajafi H, Medina RA, Adam C. Evaluation of the floor accel- eration response spectra of numerical building models based on recorded building response data. J Earthq Eng. 2021. https://doi. org/10.1080/13632469.2021.1927887.
  • 16. Vukobratovic V, Yeow TZ, Kusunoki K. Floor acceleration demands in three RC buildings subjected to multiple excitations during shake table tests. B Earthq Eng. 2021;19(13):5495–523. https://doi.org/10.1007/s10518-021-01181-2.
  • 17. Surana M, Singh Y, Lang DH. Effect of structural characteristics on damping modification factors for floor response spectra in RC buildings. Eng Struct. 2022. https://doi.org/10.1016/j.engstruct. 2021.112514.
  • 18. Vukobratovic V, Fajfar P. Code-oriented floor acceleration spec- tra for building structures. B Earthq Eng. 2017;15(7):3013–26. https://doi.org/10.1007/s10518-016-0076-4.
  • 19. Zhou H, Shao X, Tian Y, Xu G, Shang Q, Li H, Wang T. Repro- ducing response spectra in shaking table tests of nonstructural components. Soil Dyn Earthq Eng. 2019. https:// doi. org/ 10. 1016/j.soildyn.2019.105835.
  • 20. Kazantzi AK, Miranda E, Vamvatsikos D. Strength-reduction fac- tors for the design of light nonstructural elements in buildings. Earthq Eng Struct D. 2020;49(13):1329–43. https://doi.org/10. 1002/eqe.3292.
  • 21. Kazantzi AK, Vamvatsikos D, Miranda E. The effect of damp- ing on floor spectral accelerations as inferred from instrumented buildings. B Earthq Eng. 2020;18(5):2149–64. https://doi.org/10. 1007/s10518-019-00781-3.
  • 22. Kothari P, Parulekar YM, Reddy GR, Gopalakrishnan N. In-struc- ture response spectra considering nonlinearity of RCC structures: experiments and analysis. Nucl Eng Des. 2017;322:379–96. https://doi.org/10.1016/j.nucengdes.2017.07.009.
  • 23. Pu WC, Xu X. Estimation of floor response spectra induced by artificial and real earthquake ground motions. Struct Eng Mech. 2019;71(4):377–90. https://doi.org/10.12989/sem.2019.71.4.377.
  • 24. Perrone D, Brunesi E, Filiatrault A, Nascimbene R. Probabilistic estimation of floor response spectra in masonry infilled reinforced concrete building portfolio. Eng Struct. 2019. https://doi.org/10. 1016/j.engstruct.2019.109842.
  • 25. Vukobratovic V, Fajfar P. A method for the direct determination of approximate floor response spectra for SDOF inelastic struc- tures. B Earthq Eng. 2015;13(5):1405–24. https://doi.org/10.1007/ s10518-014-9667-0.
  • 26. Vukobratovic V, Fajfar P. A method for the direct estimation of floor acceleration spectra for elastic and inelastic MDOF struc- tures. J Earthq Eng. 2016;45(15):2495–511. https://doi.org/10. 1002/eqe.2779.
  • 27. Jaimes MA, Garcia-Soto AD. Evaluation of floor acceleration demands from the 2017 Mexico City code seismic provisions using a continuous elastic model and records of instrumented buildings. Earthq Spectra. 2021;36(2):213–37. https://doi.org/ 10.1177/8755293020974692.
  • 28. Filiatraulta A, Perronea D, Merinoa RJ, Calvi GM. Performance- based seismic design of nonstructural building elements. J Earthq Eng. 2021;25(2):237–69. https://doi.org/10.1080/13632469.2018. 1512910.
  • 29. Johnson TP, Dowell RK, Silva JF. A review of code seismic demands for anchorage of nonstructural components. J Build Eng. 2016;5:249–53. https://doi.org/10.1016/j.jobe.2015.11.002.
  • 30. Devin A, Fanning PJ. Non-structural elements and the dynamic response of buildings: a review. Eng Struct. 2019;187:242–50. https://doi.org/10.1016/j.engstruct.2019.02.044.
  • 31. Wang T, Shang QX, Li JC. Seismic force demands on accelera- tion-sensitive nonstructural components: a state-of-the-art review. Earthq Eng Eng Vib. 2021;20(1):39–62. https://doi.org/10.1007/ s11803-021-2004-0.
  • 32. Di Domenico M, Ricci P, Verderame GM. Floor spectra for bare and infilled reinforced concrete frames designed according to Eurocodes. Earthq Eng Struct D. 2021;50(13):3577–601. https:// doi.org/10.1002/eqe.3523.
  • 33. Shang QX, Li JC, Wang T. Floor acceleration response spectra of elastic reinforced concrete frames. J Build Eng. 2022. https://doi. org/10.1016/j.jobe.2021.103558.
  • 34. Surana M, Singh Y, Lang DH. Floor spectra of inelastic RC frame buildings considering ground motion characteristics. J Earthq Eng. 2018;22(13):488–519. https://doi.org/10.1080/13632469. 2016.1244134.
  • 35. GB 50011-2010. Code for Seismic Design of Buildings. Beijing: China Architecture and Building Press; 2010. (In Chinese).
  • 36. GB 50010-2010. Code for design of concrete structures. Beijing: China Construction Industry Press; 2010. (In Chinese).
  • 37. Zou XG, Yang WG, Liu P, Wang M. Shaking table tests and numerical study of a sliding isolation bearing for the seismic pro- tection of museum artifacts. J Build Eng. 2022. https://doi.org/10. 1016/j.jobe.2022.105725.
  • 38. Gao CH, Yuan XB. Development of the shaking table and array system technology in China. Adv Civ Eng. 2019. https://doi.org/ 10.1155/2019/8167684.
  • 39. Richard B, Cherubini S, Voldoire F, Charbonnel PE, Chaudat T, Abouri S, Bonfils N. SMART 2013: experimental and numeri- cal assessment of the dynamic behavior by shaking table tests of an asymmetrical reinforced concrete structure subjected to high intensity ground motions. Eng Struct. 2016;109(Feb 15):99–116. https://doi.org/10.1016/j.engstruct.2015.11.029.
  • 40. American Society of Civil Engineers, ASCE 7–16: Minimum Design Loads for Buildings and Other Structures, 2016. Reston, Virginia.
  • 41. Cen, Eurocode 8: Design of Structures for Earthquake Resistance- Part 1: General Rules, Seismic Actions and Rules for Buildings. EN 1998-1, 2004. Brussels, Belgium.
  • 42. NZS 1170.5: 2004, Structural Design Actions Part 5: Earthquake Actions-New Zealand Commentary. Standards New Zealand, 2004, Wellington.
  • 43. Wang Y, Yang WG. Floor response spectral analysis and fitting of museum building before and after isolation. Proc Inst Civil Eng Struct Build. 2021;174(8):615–26. https://doi.org/10.1007/ s10518-015-9846-7.
  • 44. Petrone C, Magliulo G, Manfredi G. Seismic demand on light acceleration-sensitive nonstructural components in Euro- pean reinforced concrete buildings. Earthq Eng Struct Dynam. 2015;44(8):1203–17. https://doi.org/10.1002/eqe.2508.
  • 45. Liu P, Pang H, Xue W, Yang WG. Fragility and risk assessment for sliding artifacts in artifact-showcase-museum systems subjected to three-component ground motions. J Build Eng. 2022. https:// doi.org/10.1080/13632469.2021.1979132.
  • 46. Liu P, Li ZH, Yang WG. Seismic fragility analysis of sliding arti- facts in nonlinear artifact-showcase-museum systems. Struct Eng Mech. 2021;78:333–50. https://doi.org/10.12989/sem.2021.78.3. 333.
  • 47. Weiser J, Pekcan G, Zaghi AE, Itani A, Maragakis M. Floor accel- erations in yielding special moment resisting frame structures. Earthq Spectra. 2013;29(3):987–1002. https://doi.org/10.1193/1. 4000167.
  • 48. Du C, Guo R, Zhou MJ, Zhang CL. Comparison of calculation method on bi-directional shearing capacity of RC framed col- umns. Proceeding of the second international conference on civil engineering, Architecture and Building Materials. 2012, Yantai, China. https://doi.org/10.4028/www.scientific.net/AMM.166-169. 2863.
  • 49. Anajafi H, Medina RA. Evaluation of ASCE 7 equations for designing acceleration-sensitive nonstructural components using data from instrumented buildings. Earthq Eng Struct D. 2018;47(4):1075–94. https://doi.org/10.1002/eqe.3006.
  • 50. Singh MP, Moreschi LM, Suarez LE, Matheu EE. Seismic design forces. II: Flexible nonstructural components. J Struct Eng. 2006;132(10):1533–42. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9445(2006)132:10(1533).
  • 51. Kazantzi AK, Vamvatsikos D, Miranda E. Evaluation of seismic acceleration demands on building nonstructural elements. J Struct Eng. 2020. https://doi.org/10.1061/(ASCE)ST.1943-541X.00026 76.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8459b5d1-982d-41b1-821a-2cff0319960c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.