PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comparative Study of Various Edge Detection Techniques for Underwater Images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, underwater image identification is a challenging task for many researchers focusing on various ap plications, such as tracking fish species, monitoring coral reef species, and counting marine species. Because underwater im ages frequently suffer from distortion and light attenuation, pre-processing steps are required in order to enhance their quality. In this paper, we used multiple edge detection techniques to determine the edges of the underwater images. The pictures were pre-processed with the use of specific techniques, such as enhancement processing, Wiener filtering, median filtering and thresholding. Coral reef pictures were used as a dataset of underwater images to test the efficiency of each edge detection method used in the experiment. All coral reef image datasets were captured using an underwater GoPro camera. The performance of each edge detection technique was evaluated using mean square error (MSE) and peak signal to noise ratio (PSNR). The lowest MSE value and the highest PSNR value represent the best quality of underwater images. The results of the experiment showed that the Canny edge detection technique outperformed other approaches used in the course of the project.
Rocznik
Tom
Strony
23--33
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu 21030 Kuala Nerus Terengganu, Malaysia
  • Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus Terengganu, Malaysia
  • Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu 21030 Kuala Nerus Terengganu, Malaysia
Bibliografia
  • [1] M. Fatan, M. Daliri, and A. Shahri, „Underwater cable detection in the images using edge classification based on texture information", Measurement, vol. 91, pp. 309-317, 2017 (DOI: 10.1016/j.measurement.2016.05.030).
  • [2] A. Saini and M. Biswas, „Object detection in underwater image by detecting edges using adaptive thresholding", in Proc. of 3rd Int. Conf. on Trends in Electron. and Informat. ICOEI 2019, Tirunelveli, India, 2019, pp. 628-63 2 (DOI: 10.1109/ICOEI.2019.8862794).
  • [3] P. Princess, S. Silas, and E. B. Rajsingh, „Performance analysis of edge detection algorithms for object detection in accident images", in Proc. of Global Conf. for Advan. in Technol. GCAT 2019, Bangalore, India, 2019 (DOI: 10.1109/GCAT47503.2019.8978438).
  • [4] K. Srividhya and M. Ramya, „Performance analysis of preprocessing filters for underwater images", in Proc. of Int. Conf. On Robot., Autom., Contr. and Embed. Syst. RACE 2015, Chennai, India, 2015 (DOI: 10.1109/RACE.2015.7097234).
  • [5] M. A. Malborg, L. L. Lacatan, R. M. Dellosa, Y. D. Austria, and C. F. Cunanan, „Edge detection comparison of hybrid feature extraction for combustible fire segmentation: A Canny vs Sobel performance analysis", in Proc. of 11th IEEE Contr. and Syst. Graduate Res. Colloq. ICSGRC 2020, Shah Alam, Malaysia, pp. 318-322 (DOI: 10.1109/ICSGRC49013.2020.9232632).
  • [6] R. Ramnarayan, N. Saklani, and V. Verma, „A review on edge detection technique canny edge detection", Int. J. of Comp. Appl., vol. 178, pp. 28-30, 2019 (DOI: 10.5120/ijca2019918828).
  • [7] R. Song, Z. Zhang, and H. Liu, „Edge connection based Canny edge detection algorithm", Pattern Recog. and Image Anal., vol. 27, pp. 740-747, 2017 (DOI: 10.1134/S1054661817040162).
  • [8] C. Jeong, H. Yang, and K. Moon, „A novel approach for detecting the horizon using a convolutional neural network and multiscale edge detection", Multidimens. Syst. and Sig. Proce., vol. 30, pp. 1187-1204, 2019 (DOI: 10.1007/s11045-018-0602-4).
  • [9] Y. Zhang, X. Han, H. Zhang, and L. Zhao, „Edge detection algorithm of image fusion based on improved Sobel operator", in Proc. of IEEE 3rd Inform. Technol. and Mechatron. Engin. Conf. ITOEC 2017, Chongqing, China, 2017, pp. 457-461 (DOI: 10.1109/ITOEC.2017.8122336).
  • [10] Y. Tian, L. Lan, and L. Sun, „A review of sonar image segmentation for underwater small targets", in Proc. of the 2020 Int. Conf. On Pattern Recogn. and Intell. Sys., Athens, Greece, 2020 (DOI: 10.1145/3415048.3416098).
  • [11] M. Sudhakara and M. Meena, „An edge detection mechanism using L*A*B color-based contrast enhancement for underwater images", Indonesian J. of Elec. Engin. and Com. Sci., vol. 18, pp. 41-48, 2020 (DOI: 10.11591/ijeecs.v18.i1).
  • [12] R. Priyadharsini, T. Sharmila, and V. Rajendran, „An efficient Edge detection technique using filtering and morphological operations for underwater acoustic images", in Proc. of the 2nd Int. Conf. on Inform. and Commun. Technol. for Competit. Strat., Udaipur, India, 2016 (DOI: 10.1145/2905055.2905168).
  • [13] A. Bist and S. Sondhi, „Fractional order differentiator based filter for edge detection of low contrast underwater images", Int. J. of Electron., Elec. and Computat. Syst., vol. 6, no. 7, pp. 376-383, 2017.
  • [14] H. A. Elsennary, M. E. Hussien, and A. E. Ali, „Edge detection of an image based on extended difference of Gaussian", Amer. J. of Comp. Sci. and Technol., vol. 2, no. 3, pp. 35-47, 2019 (DOI: 10.11648/j.ajcst.20190203.1).
  • [15] S. Raj, C. Jose, and M. Supriya, „Hardware realization of Canny edge detection algorithm for underwater image segmentation using field programmable gate arrays", J. of Engin. Sci. and Technol., vol. 12, no. 9, pp. 2536-2550, 2017 [Online]. Available: http://jestec.taylors.edu.my/Vol%2012%20issue%209%20September%202017/12 9 19.pdf
  • [16] M. Han, Z. Lyu, T. Qiu, and M. Xu, „A review on intelligence dehazing and color restoration for underwater images", IEEE Trans. on Syst., Man, and Cybernet.: Syst., vol. 50, no. 5, pp. 1820-1832, 2020 (DOI: 10.1109/TSMC.2017.2788902).
  • [17] T. Liu, L. Wan, and X. Liang, „An image segmentation method of underwater targets based on active contour model", Appl. Mechan. and Mate., vol. 511-512, pp. 457-461, 2014 (DOI: 10.4028/www.scientific.net/AMM.511-512.457).
  • [18] M. Gandhi, J. Kamdar, and M. Shah, „Preprocessing of nonsymmetrical images for edge detection", Augmented Human Research, vol. 5, Article no. 10, pp. 1-10, 2020 (DOI: 10.1007/s41133-019-0030-5).
  • [19] A. Baareh, A. Al-Jarrah, A. M. Smadi, and G. Shakah, „Performance evaluation of edge detection using Sobel, Homogeneity and Prewitt algorithms", J. of Softw. Engin. and Appl., vol. 11, pp. 537-551, 2018 (DOI: 10.4236/jsea.2018.1111032).
  • [20] B. Dhruv, N. Mittal, and M. Modi, „Comparative analysis of Edge detection techniques for medical images of different body parts", in Data Science and Analytics, 4th International Conference on Recent Developments in Science, Engineering and Technology, RED-SET 2017, Gurgaon, India, October 13-14, 2017, Revised Selected Papers, B. Panda, S. Sharma, and N. Roy, Eds. Communications in Computer and Information Science, vol. 799, pp. 164-176. Springer, 2018 (DOI: 10.1007/978-981-10-8527-7 15).
  • [21] P. Ganesan and G. Sajiv, „A comprehensive study of edge detection for image processing applications", in Proc. Int. Conf. on Innovat. In Inform., Embedded and Commun. Syst. ICIIECS 2017, Coimbatore, India, 2017 (DOI: 10.1109/ICIIECS.2017.8275968).
  • [22] R. Li, D. Han, J. Dezert, and Y. Yang, „A novel edge detector for color images based on MCDM with evidential reasoning", in Proc. 20th Int. Conf. on Inform. Fusion Fusion 2017, Xi'an, China, 2017 (DOI: 10.23919/ICIF.2017.8009727).
  • [23] F. Bachofer, G. Quänähervä, T. Zwiener, M. Maerker, and V. Hochschild, „Comparative analysis of edge detection techniques for SAR images", Eur. J. of Remote Sens., vol. 49, pp. 205-224, 2016 (DOI: 10.5721/EuJRS20164912).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84583af4-e503-4cc8-971d-21b073431eba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.