Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A concept of conservation of energy flux for the internal waves propagating in an inhomogeneous shallow water is examined. The emphasis is put on an application of solution of the Korteweg–de Vries (KdV) equation in a prescribed form of the cnoidal and solitary waves. Numerical simulations were applied for the southern Baltic Sea, along a transect from the Bornholm Basin, through the Słupsk Sill and Słupsk Furrow to the Gdańsk Basin. Three-layer density structure typical for the Baltic Sea has been considered. An increase of wave height and decrease of phase speed with shallowing water depth was clearly demonstrated. The internal wave dynamics on both sides of the Słupsk Sill was found to be different due to different vertical density stratification in these areas. The bottom friction has only negligible influence on dynamics of internal waves, while shearing instability may be important only for very high waves. Area of possible instability, expressed in terms of the Richardson number Ri, is very small, and located within the non-uniform density layer, close to the interface with upper uniform layer. Kinematic breaking criteria have been examined and critical internal wave heights have been determined.
Czasopismo
Rocznik
Tom
Strony
59--70
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
Bibliografia
- 1.Abramowitz, M., Stegun, I. A., 1975. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publ., New York, 1075 pp.
- 2.Bogucki, D., Garrett, Ch., 1993. A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr. 23 (8), 1767—1776.
- 3.Gill, A.E., 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662 pp.
- 4.Gradshteyn, I. S., Ryzhik, I. M., 1965. Tables of Integrals, Series and Products. Academic Press, New York, 860 pp.
- 5.Grimshaw, R., Guo, Ch., Helfrich, K., Vlasenko, V., 2014. Combined effect of rotation and topography on shoaling oceanic internal solitary waves. J. Phys. Oceanogr. 44 (4), 1116—1132.
- 6.Grimshaw, R., Pelinovsky, E. N., Talipova, T., Kurkin, A., 2004. Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34 (1), 2774—2791.
- 7.Helfrich, K. R., 1992. Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133—154.
- 8.Helfrich, K. R., Melville, W. K., 1986. On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech. 167, 285—308.
- 9.Holloway, P. E., 1994. Observations of internal tide propagation on the Australian North West Shelf. J. Phys. Oceanogr. 24, 1706— 1716.
- 10.Holloway, P. E., 1996. A numerical model of internal tides with application to the Australian North West Shelf. J. Phys. Oceanogr. 26, 21—37.
- 11.Korteweg, D. J., de Vries, G., 1895. On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves. Phil. Mag. J. Sci. 39, 422—443.
- 12.Krauss, W., 1966. Interne Wellen. Gebruder Borntraeger, Berlin, 248 pp.
- 13.Kundu, P. K., Cohen, I. M., Dowling, D. R., 2016. Fluids Mechanics, sixth edition. Elsevier, Amsterdam, 921 pp.
- 14.Kurkina, O., Talipova, T. G., Pelinovsky, E. N., Soomere, T., 2011. Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water. J. Coast. Res. 64, 2042— 2047.
- 15.Lien, R. C., Henyey, F., Ma, B., 2014. Large-amplitude internal solitary waves observed in the Northern South China Sea: properties and energetics. J. Phys. Oceanogr. 44 (4), 1095—1115.
- 16.Massel, S. R., 1989. Hydrodynamics of Coastal Zones. Elsevier, Amsterdam, 336 pp.
- 17.Massel, S. R., 2012. Tsunami in coastal zone due to meteorite impact. Coastal Eng. 66, 40—49.
- 18.Massel, S. R., 2015. Internal Gravity Waves in the Shallow Seas. GeoPlanet: Earth and Planetary Sciences. Springer Int. Publ, Switzerland, 163 pp.
- 19.Miles, J. W., 1981. The Korteweg-de Vries equation: a historic essay. J. Fluid Mech. 106, 131—147.
- 20.Pelinovsky, E. N., Shavratsky, S. Kh., 1976. Propagation of nonlinear internal waves in an inhomogeneous ocean. Izv. Atmos. Ocean. Phys. 12 (1), 41—44.
- 21.Pelinovsky, E. N., Stepanyants, Yu., Talipova, T. G., 1994. Modelling of the propagation of nonlinear internal waves horizontally inhomogeneous ocean. Izv. Atmos. Ocean. Phys. 30 (1), 79—85.
- 22.Piechura, J., Beszczyńska-Möller, A., 2004. Inflow waters in the deep regions of the southern Baltic Sea — transport and transformations. Oceanologia 46 (1), 113—141.
- 23.Talipova, T. G., Pelinovsky, E. N., Kouts, T., 1998. Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology, Translated from Okeanologiya 38, 33—42.
- 24.Vlasenko, V., Hutter, K., 2002. Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32 (6), 1779—1793.
- 25.Whitham, G. B., 1974. Linear and Nonlinear Waves. Wiley, New York, 636 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84534093-f6bd-4357-8272-4a031e87c47f