Identyfikatory
Warianty tytułu
Osadzanie siarczku miedzi na modyfikowanych włóknach poliestrowych o dobrej przewodności
Języki publikacji
Abstrakty
The immobilization of CuS on the surface of poly (ethylene terephtalate) (PET) fibres was carried out by the functionalization of PET fibres with chitosan (CS), followed by the chemical deposition method. Crosslinked chitosan with NH2 functionality was used as a chelator to absorb copper ions, which can successfully initiate CuS deposition in the following chemical deposition stage. The CuS-loaded fibres were characterised by scanning electron microscopy, X-ray diffraction, infrared spectroscopy and thermal gravimetry, respectively. The properties of tensile and conductivity were also investigated. The lowest surface resistance 42 Ω/cm of the treated PET fibres was obtained when the CS concentration was 1.0%.
W pracy zbadano proces osadzania siarczku miedzi na modyfikowanych chitozanem włóknach poliestrowych. Chitozan został użyty jako chelator do absorbowania jonów miedzi, które z powodzeniem mogą inicjować odkładanie siarczku miedzi w etapie osadzania chemicznego. Włókna nasycone siarczkiem miedzi scharakteryzowano za pomocą skaningowej mikroskopii elektronowej, dyfrakcji rentgenowskiej, spektroskopii w podczerwieni i grawimetrii termicznej. Zbadano również właściwości wytrzymałościowe i przewodność włókien. Najniższą oporność powierzchniową (42 Ω/cm) poddanych obróbce włókien poliestrowych uzyskano, gdy stężenie siarczku wynosiło 1,0%.
Czasopismo
Rocznik
Strony
25--29
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, P. R. China
autor
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, P. R. China
Bibliografia
- 1. Xiao-Sai H, Yong S, Li-Hui X, Li-Ming W, Li-Sha L, Ya-Ting Z. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications. Applied Surface Science 2016; 385: 162-170.
- 2. Kemmler M, Lazell M, O’Brien P, Otway DJ, Park JH, Walsh JR. The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors. Journal of Materials Science: Materials in Electronics 2002; 13(9): 531-535.
- 3. Bollero A, Grossberg M, Asenjo B, Gutierrez MT. CuS-based thin films for architectural glazing applications produced by co-evaporation: Morphology, optical and electrical properties. Surface & Coatings Technology 2009; 204(5): 593-600.
- 4. Pathan HM, Desai JD, Lokhande CD. Modified chemical deposition and physicochemical properties of copper sulphide (Cu2S) thin films. Applied Surface Science 2002; 202(1): 47-56.
- 5. Podder J, Kobayashi R, Ichimura M. Photochemical deposition of CuxS thin films from aqueous solutions. Thin Solid Films 2005; 472 (1-2): 71-75.
- 6. Cordova R, Gomez H, Schrebler R, Cury P, Orellana M, Grez P, Leinen D, RamosBarrado JR, Del Rio R. Electrosynthesis and Electrochemical Characterization of a Thin Phase of CuxS (x 2) on ITO Electrode. Langmuir 2002; 18(22): 8647-8654.
- 7. Shamraiz U, Hussain RA, Badshah A. Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry 2016; 238: 25-40.
- 8. Bagul SV, Chavhan SD, Sharma R. Growth and characterization of CuxS (x =1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT). Journal of Physics & Chemistry of Solids 2007; 68(9): 1623-1629.
- 9. Chaki SH, Deshpande MP, Tailor JP. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 2014, 550: 291-297.
- 10. Kim HJ, Kim JH, Kumar CHSS Pavan, Punnoose D, Kim SK, Gopi Chandu VVM, Rao SS. Facile chemical bath deposition of CuS nano peas like structure as a high efficient counter electrode for quantum-dot sensitized solar cells. Journal of Electroanalytical Chemistry 2015; 739: 20-27.
- 11. Gouanve F, Marais S, Bessadok A, Langevin D, Metayer M. Kinetics of water sorption in flax and PET fibers. European Polymer Journal 2007; 43(2): 586-598.
- 12. Korehei R; Kadla JF. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydrate Polymers 2014; 100(2): 150.
- 13. Jinglong W, Rizwangul Y, Jinge L, Peilin L, Pengyi Z, Jeonghyun K. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature. Applied Surface Science 2015; 357:. 787-794.
- 14. Karbownik I, Bucheńska J, Lipp-Symonowicz B, Wrzosek H. Studies on the Influence of Grafting PET Fibres with Acrylic Acid on Molecular Orientation. Fibres & Textiles in Eastern Europe 2008, 16, 5(70): 108-111.
- 15. Kardas I, Lipp-Symonowicz B, Sztajnowski S. Comparison of the Effect of PET Fibres’ Surface Modification Using Enzymes and Chemical Substances with Respect to Changes in Mechanical Properties. Fibres & Textiles in Eastern Europe 2009, 17, 4(75): 93-97.
- 16. Metosen ANSB, Pang SC, Chin SF. Nanostructured multilayer composite films of manganese dioxide/nickel/copper sulfide deposited on polyethylene terephthalate supporting substrate. Journal of Nanomaterials 2015; 16(1): 131.
- 17. Yamamoto T, Tanaka K, Kubota E, Osakada K. Deposition of copper sulfide on the surface of poly(ethylene terephthalate) and poly(vinyl alcohol) films in aqueous solution to give electrically conductive films. Chemistry of Material 1993; 5(9): 1352-1357.
- 18. Rui X, Shimao W, Weiwei D, Xiaodong F; Linhua H, Zhu J. A new probe into thin copper sulfide counter electrode with thickness below 100 nm for quantum dotsensitized solar cells. Electrochimica Acta 2016; 205: 45-52.
- 19. Xiaoyun A, Jingjing M, Kai W, Maosheng Z. Growth of silver nanowires on carbon fiber to produce hybrid/waterborne polyurethane composites with improved electrical properties. Journal of Applied Polymer Science 2016; 133(9): 43056.
- 20. Karaca E, Omeroglu S, Akcam O. Investigation of the effects of perlite additive on some comfort and acoustical properties of polyester fabrics. Journal of Applied Polymer Science 2016; 133(16): 43128.
- 21. Shen Y, Zhang HF; Wang LM, Xu LH, Ding Y. Fabrication of electromagnetic shielding polyester fabrics with carboxymethyl chitosan-palladium complexes activation. Fibers and Polymers 2014; 15(7): 1414-1421.
- 22. Dagang L, Zehui L, Yi Z, Zhenxuan L, Rakesh K. Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: Adsorption and desorption performance. Carbohydrate Polymers 2014; 111(1): 469-476.
- 23. Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K. Adsorption of gold(III), platinum(W) and palladium(II) onto glycine. Bioresource Technology 2008; 99(9): 3801-3809.
- 24. Kos L. Use of Chitosan for Textile Wastewater Decolourization. Fibres & Textiles in Eastern Europe 2016; 24, 3(117): 130-135. DOI:10.5604/12303666.1196623.
- 25. Grijalva H, Inoue M, Boggavarapu S, Calvert P. Amorphous and crystalline copper sulfides, CuS. Journal of Materials Chemistry 1996; 6(7): 1157-1160.
- 26. Joint Committee on Powder Diffraction Standards (JCPDS) Card File 6-464.
- 27. Lindroos S, Arnold A, Keskela M. Growth of CuS thin films by the successive ionic layer adsorption and reaction method. Applied Surface Science 2000, 158(1-2): 75-80
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-844ebddd-7cb2-4b98-a405-a95a85711fc6