Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain – digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1176--1192
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw
Bibliografia
- Bakuła, K. (2011), Reduction of DTM obtained from LiDAR data for flood modeling, Arch. Photogram. Cartogr. Remote Sens. 22, 51-61.
- Casas, A., G. Benito, V.R. Thorndycraft, and M. Rico (2006), The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling, Earth. Surf. Proc. Land. 31, 4, 444-456, DOI: 10.1002/ esp.1278.
- Cheveresan, B. (2012), Digital terrain model accuracy for flooded area delineation. In: Proc. 5th Conf. Water Observation and Information System for Decision Support BALWOIS 2012, 27 May – 2 June 2012, Ohrid, Republic of Macedonia.
- Directive (2007), Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, Offic. J. Europ. Union L288, 27-34.
- Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf (2007), The Shuttle Radar Topography Mission, Rev. Geophys. 45, 2, RG2004, DOI: 10.1029/2005RG000183.
- French, J.R. (2003), Airborne LiDAR in support of geomorphological and hydraulic modelling, Earth Surf. Proc. Land. 28, 3, 321-335, DOI: 10.1002/esp.484.
- Gichamo, T.Z., I. Popescu, A. Jonoski, and D. Solomatine (2012), River crosssection extraction from the ASTER global DEM for flood modeling, Environ. Modell. Softw. 31, 37-46, DOI: 10.1016/j.envsoft.2011.12.003.
- Hirschmüller, H. (2008), Stereo processing by semiglobal matching and mutual information, IEEE Trans. Patt. Anal. Mach. Intell. 30, 2, 328-341, DOI: 10.1109/TPAMI.2007.1166.
- Höhle, J., and M. Potuckova (eds.) (2011), Assessment of the Quality of Digital Terrain Models, European Spatial Data Research, Official Publ. No. 60, EuroSDR.
- Hovenbitzer, M. (2008), The European DEM (EuroDEM) – setup and harmonisation. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Beijing, China, Vol. 37, Part B4, 1853-1856.
- Jacobsen, K., and R. Passini (2010), Analysis of ASTER GDEM elevation models. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Calgary, Canada, Vol. 38, Part 1.
- Krieger, G., A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink (2007), TanDEM-X: a satellite formation for high-resolution SAR interferometry, IEEE Trans. Geosci. Remote Sens. 45, 11, 3317-3341, DOI: 10.1109/TGRS.2007.900693.
- Kurczyński, Z. (2006), Aerial and Satellite Imagery of Earth, Warsaw University of Technology Publishing House, Warsaw (in Polish).
- Kurczyński, Z., and K. Bakuła (2013), The selection of aerial laser scanning parameters for countrywide digital elevation model creation. In: Proc. 13th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, 16-22 June 2013, Vol. 2, 695-702, DOI: 10.5593/SGEM2013/BB2.V2/S10.020.
- Lane, S.N., R.J. Hardy, L. Elliott, and D.B. Ingham (2002), High-resolution numerical modelling of three-dimensional flows over complex river bed topography, Hydrol. Process. 16, 11, 2261-2272, DOI: 10.1002/hyp.5034.
- Lee, D.S., J. Shan, and J.S. Bethel (2003), Class-guided building extraction from IKONOS imagery, Photogramm. Eng. Remote Sens. 69, 2, 143-150, DOI: 10.14358/PERS.69.2.143.
- Lehner, B., K.Verdin, and A. Jarvis (2008), New global hydrography derived from spaceborne elevation data, Eos Trans. Am. Geophys. Union 89, 10, 93-94, DOI: 10.1029/2008EO100001.
- Li, Z.L., Q. Zhu, and C. Gold (2005), Digital Terrain Modelling: Principles and Methodology, CRC Press, Boca Raton.
- Mandlburger, G., and H. Brockmann (2001), Modelling a watercourse DTM based on airborne laser-scanner data using the example of the River Oder along the German/Polish border. In: Proc. OEEPE Workshop “Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models”, 1-3 March 2001, Stockholm, Sweden, 111-120.
- Mandlburger, G., C. Hauer, B. Höfle, H. Habersack, and N. Pfeifer (2009), Optimisation of LiDAR derived terrain models for river flow modelling, Hydrol. Earth Syst. Sci. 13, 8, 1453-1466, DOI: 10.5194/hess-13-1453-2009.
- Martini, F., and R. Loat (eds.) (2007), Handbook on Good Practices for Flood Mapping in Europe, European Exchange Circle on Flood Mapping (EXCIMAP), 57 pp.
- Miller, C.L., and R.A. Laflamme (1958), The digital terrain model – theory and application, Photogramm. Eng. 24, 433-442.
- Rabus, B., M. Eineder, A. Roth, and R. Bamler (2003), The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar, ISPRS J. Photogramm. Remote Sens. 57, 4, 241-262, DOI: 10.1016/ S0924-2716(02)00124-7.
- Rauter, H.I., A. Nelson, P. Strobl, W. Mehl, and A. Jarvis (2009), A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. In: Proc. IEEE Int. Geoscience and Remote Sensing Symp., 12- 17 July 2009, Cape Town, South Africa, Vol. 5, 240-243, DOI: 10.1109/ IGARSS.2009.5417688.
- Rothermel, M., and N. Haala (2011), Potential of dense matching for the generation of high quality digital elevation models. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Workshop, 14-17 June 2011, Hannover, Germany, Vol. 38-4/W19, 271-276.
- Sole, A., L. Giosa, L. Nolè, V. Medina, and A. Bateman (2008), Flood risk modelling with LiDAR technology, WIT Trans. Ecol. Environ. 118, 27-36, DOI: 10.2495/FRIAR080031.
- Wang, W., X. Yang, and T. Yao (2012), Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet, Hydrol. Process. 26, 2, 213-225, DOI: 10.1002/hyp. 8127.
- Wehr, A., and U. Lohr (1999), Airborne laser scanning – an introduction and overview, ISPRS J. Photogramm. Remote Sens. 54, 2-3, 68-82, DOI: 10.1016/ S0924-2716(99)00011-8.
- Wilson, M., P. Bates, D. Alsdorf, B. Forsberg, M. Horritt, J. Melack, F. Frappart, and J. Famiglietti (2007), Modeling large-scale inundation of Amazonian seasonally flooded wetlands, Geophys. Res. Lett. 34, 15, L15404, DOI: 10.1029/2007GL030156.
- Yamazaki, D., C.A. Baugh, P.D. Bates, S. Kanae, D.E. Alsdorf, and T. Oki (2012), Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling, J. Hydrol. 436-437, 81-91, DOI: 10.1016/j.jhydrol.2012.02.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84444ace-7065-44c7-86da-349f5fcabe97