PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Biodegradation Speed and Biodegradability of Polyethylene and Manihot Esculenta Starch Blends

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over 350 million tons of conventional plastics are currently produced from petroleum per year and this amount is expected to rise exponentially in the near future. Proper disposal of these products has caused a great problem for the waste management industry and as a result, there is a significant negative impact on the environment. As a matter of fact, in order to reduce the environmental impact of plastics, some products obtained from agriculture (like starch) are used as polymer blend with synthetic plastics. This study shows that Manihot esculenta can be blended with polyethylene to form a partially degradable polymer. The processing conditions and sample formulations are shown to significantly affect the structure of the polymer which has a concomitant effect upon the degradation ratio as well as the degradation rate. Six samples were produced by varying composition of the blend between Low-density Polyethylene and Manihot esculenta using glycerol and water as plasticiser. These samples were buried in soil and the degradation ratios and rates were studied within a period of 28 days. The results showed that these produced biopolymers are environmentally compatible and bio-degradable. The rate of biodegradation in soil of these biopolymer samples varied largely. The polymer blend with 80% LDPE (20 CaS) by weight had the most regular weight loss over the period of the study. Under the conditions the study was carried out, polymer blend 20 CaS also had the steadiest rate of degradation. Hence, 80% LDPE (wt.%) blended with Manihot esculenta starch is the optimal ratio with regard to the degradability of biopolymer in sandy-loam soil.
Rocznik
Strony
65--72
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
  • PASAD Research Innovation Nigeria (PRIN), Lagos. Nigeria
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
  • Department of Mechanical & Industrial Engineering, University of Johannesburg, South Africa
  • Department of Mechanical Engineering, Covenant University, Cannanland, Ota. Nigeria
Bibliografia
  • 1. Abbott, A. P., Abolibda, T. Z., Davis, S. J., Emmerling, F., Lourdin, D., Leroyd, E. and Wise, W. R. (2014). Glycol based plasticisers for salt modified starch. RSC Adv., 4, 40421–40427.
  • 2. Akinpelu, A.O., Amamgbo, L. E.F., Olojede, A.O., Oyekale, A.S. (2011). Health Implications of Cassava Production and Consumption. Journal of Agriculture and Social Research, 11(1).
  • 3. Andrej K. (2012), Biodegradable Polymers and Plastics, Innovative Value Chain Development for Sustainable Plastics in Central Europe (PLAS-TiCE), www.plastice.org
  • 4. Axel S. (2009), Cotton Linters: An Alternative Cellulosic Raw Material, Macromolecular Symposia, 280(1), 45–53
  • 5. Barnes D.K.A., Galgani F., Thompson R.C. & Barlaz M. (2009) Accumulation and Fragmentation of Plastic Debris in Global Environments. Philosophical Transactions of the Royal Society B, 364:1985–1998. (doi:10.1098/rstb.2008.0205)
  • 6. Cho, H. S., Moon, H. S., Kim, M., Nam, K., & Kim, J. Y. (2011). Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Management, 31(3), 475–480. https://doi.org/10.1016/j.wasman.2010.10.029
  • 7. D’Alessandro, N. (2014). 22 Facts about Plastic Pollution. Retrieved March 24, 2018, from https://www.ecowatch.com/22-facts-about-plastic-pollution-and-10-things-we-can-do-about-it-1881885971.html
  • 8. Derraik J.G.B. (2002), The Pollution of the Marine Environment by Plastic Debris: A Review, Marine Pollution Bulletin, 44, 842–852.
  • 9. Dong A.J., Zhang, J.W., Jiang K. and Deng L.D. (2008), “Characterization and in-vitro Degradation of Poly (octadecanoic anhydride), J. Mater Sci., 19, 39–46.
  • 10. Egesi, C., Mbanaso, E., Ogbe, F., Okogbenin, E. and Fregene, M. (2006). Development of cassava varieties with high value root quality through induced mutations and marker-aided breeding. NR-CRI, Umudike Annual Report. 2–6
  • 11. FAO, (2008). Corporate Document Repository. [Online]. The impact of HIV/AIDS on the agricultural sector. www.fao.org/DOCREP/005/Y4636E/ y4636e05.htm
  • 12. Farrin J (2005) Biodegradable plastics from natural resources. Institute of Technology, Rochester
  • 13. Garrison, T. F., Murawski, A and Quirino, R. L. (2016) Bio-Based Polymers with Potential for Biodegradability. Polymers, 8(7), 26
  • 14. Gilpin R., Wagel D. & Solch J. (2003) Production, Distribution and Fate of Polycholorinated dibenzop-dioxins, Dibenzofurans and Related Organohalogens in the Environment. In Dioxins and health (eds A. Schecter & T. Gasiewicz), 2nd edn. Hoboken, NJ: John Wiley & Sons Inc.
  • 15. Gregory M.R. (2009) Environmental Implications of Plastic Debris in Marine Settings Entanglement, Ingestion, Smothering, Hangers-on, Hitch-hiking and Alien Invasions. Phil. Trans. R. Soc. B 364, 2013–2025. (doi:10.1098/rstb.2008.0265)
  • 16. Hopewell J, Dvorak R, Kosior E. (2009) Plastics Recycling: Challenges and Opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1526), 2115–2126. doi:10.1098/rstb.2008.0311.
  • 17. Johnsson, N., & Steuer, F. (2018). Bioplastic material from microalgae: Extraction of starch and PHA from microalgae to create a bioplastic material.
  • 18. Ladeira T., Souza H. and Pena R. (2013), Characterization of the roots and starches of three cassava cultivars, International Journal of Agricultural Science Research, 2(1), 12–20
  • 19. Leonel M (2007). Analysis of the shape and size of starch grains from different botanical species. Ciênc. Tecnol. Aliment., 27(3): 579–588.
  • 20. Mahalakshmi V. and Andrew S.N. (2012), Assessment of Physicochemically treated plastic by fungi, Annals of Biological Research 3(9):4374–4381
  • 21. Makhtar, N. S. M., Rais, M. F. M., Rodhi, M. N. M., Bujang, N., Musa, M., & Hamid, K. H. K. (2013). Tacca leontopetaloides starch: New sources starch for biodegradable plastic. Procedia Engineering, 68, 385–391. doi.org/10.1016/j.proeng.2013.12.196
  • 22. Maryam H.Y. and Hadi S.A. (2016), Synthesis, Characterization and Cytotoxicity Study of Poly (ethylene glycol) – HexamethyleneSebacamide Biopolymer, The Iraqi Journal for Mechanical and Material Engineering, Special Vol, Part II.
  • 23. Mostafa N.A., Awatef A.F., Hala M.A. and Aghareed M.T. (2018), Production of Biodegradable Plastic from Agricultural Wastes, Arabian Journal of Chemistry. (11), 546–553
  • 24. Norbert M.B., Herman F.M, Norman G.G. (1968), Encyclopaedia of polymer science and technology: plastics, resins, rubbers, fibres, vol 9, Wiley, New York, p 275
  • 25. Sigler M. (2014). The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions. Water, Air and Soil Pollution, 225(2184), 1–9 (DOI 10.1007/s11270–014–2184–6)
  • 26. Stevens, E.S. (2002) Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton, NJ: Princeton University Press,
  • 27. Westblad C., Levendis Y.A., Richter H., Howard J.B. & Carlson J (2002), A Study on Toxic Organic Emissions from Batch Combustion of Styrene, Chemosphere, 49(4), 395–412 (https://doi.org/10.1016/S0045–6535(02)00311–9)
  • 28. Wroblewska-Krepsztul J., Rydzkowski T., Borowski G., Szczypinski M.M., Klepka T., Thakur V.K., 2018. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383–395.
  • 29. Yang J., Webb, A.R., Pickerill, S.J., Hageman G. and Ameer, G.A. (2006) Synthesis and Evaluation of Poly (diolcitrate) Biodegradable Elastomers. Biomaterials, 27, pp. 1889–1898.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84417eee-f610-4fe0-abbc-60cf7eb2bab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.