PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Natural Silica from Rice Husk Ash and Nickel as a Catalyst on the Hydrogen Storage Properties of MgH2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characteristics of MgH2 as a hydrogen storage material in this study were observed by varying the composition of the catalyst. The added catalyst was a dual catalyst, namely nickel and natural silica extracted from rice husk ash with a composition of MgH2 + 10 wt% SiO2 + 10 wt% Ni (Sample A), then MgH2 + 5 wt% SiO2 + 10 wt% Ni (Sample B) , and MgH2 + 10 wt% SiO2 + 5 wt% Ni (sample C). The samples were prepared using the high energy ball milling (HEBM). The results showed that the natural silica extracted from rice husk ash (hereafter called “RHA“) can be used as a catalyst in MgH2. Then, simultaneous use of nickel with silica as dual catalyst has shown the improvement in the hydrogen storage characteristics such as temperature and desorption time. The results of this study also indicate that the composition of the catalyst affects the particle size, although the time and milling treatment are the same. Furthermore, the particle size affects the characteristics of MgH2 as a hydrogen storage material. Apart from particle size, there are other parameters that influence the characteristics of MgH2, which appear during the sample preparation process such as impurity and agglomeration phases, all of which are closely related to the composition and type of catalyst used and the milling treatment applied to the sample. The 10 hours milling time used in this study has succeeded in reducing the sample to nano size. The Mg-based materials which have a nanostructure will have a larger contact area for the hydrogen reaction. The diffusion distance during the hydrogen absorption reaction also becomes smaller so as to improve the kinetic and thermodynamic characteristics of MgH2.
Rocznik
Strony
79--85
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Berlouis L.E.A., Cabrera E., Hall-Barientos E., Hall P.J., Dodd S.B., Morris S., Imam M.A. 2001. Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni- and Mg–Fe-based alloys prepared by high-energy ball milling. Journal of Materials Research, 16(1), 45–57. https://doi.org/10.1557/jmr.2001.0012
  • 2. Chen M., Xiao X., Zhang M., Liu M., Huang X., Zheng J., Zhang Y., Jiang L., Chen L. 2019. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride. International Journal of Hydrogen Energy, 44(3), 1750–1759. https://doi.org/10.1016/j.ijhydene.2018.11.118
  • 3. Hong S.H., Song M.Y. 2018. Hydrogen absorption and release properties of MgH2, Mg2Ni, and Ni-added Mg via reactive mechanical grinding. Journal of Korean Institute of Metals and Materials, 56(2), 155–162. https://doi.org/10.3365/KJMM.2018.56.2.155
  • 4. Hou X., Hu R., Zhang T., Kou H., Li J. 2013. Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 38(36), 16168–16176. https://doi.org/10.1016/j.ijhydene.2013.09.053
  • 5. Jalil Z., Rahwanto A., Handoko E., Mustanir. 2017. The role of nano-Ni catalyst in MgH2 obtained by reactive mechanical milling method for solid hydrogen storage application. AIP Conference Proceedings, 1826. https://doi.org/10.1063/1.4979218
  • 6. Jalil Z., Rahwanto A., Malahayati M., Mursal M., Handoko E., Akhyar H. 2018. Hydrogen storage properties of mechanical milled MgH2-nano Ni for solid hydrogen storage material. IOP Conference Series: Materials Science and Engineering, 432(1). https://doi.org/10.1088/1757–899X/432/1/012034
  • 7. Jalil Z., Rahwanto A., Sofyan H., Usman M., Handoko E. 2018. The use of Silica from beach sand as catalyst in magnesium based hydrides for hydrogen storage materials. IOP Conference Series: Earth and Environmental Science, 105(1). https://doi.org/10.1088/1755–1315/105/1/012093
  • 8. Khan D., Zou J., Zeng X., Ding W. 2018. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2–Ni powder. International Journal of Hydrogen Energy, 43(49), 22391–22400. https://doi.org/10.1016/j.ijhydene.2018.10.055
  • 9. Khodaparast V., Rajabi M. 2015. Hydrogen Desorption Properties of MgH2–5 wt% Ti-Mn-Cr Composite via Combined Melt Spinning and Mechanical Alloying. Procedia Materials Science, 11, 611–615. https://doi.org/10.1016/j.mspro.2015.11.092
  • 10. Kou H., Hou X., Zhang T., Hu R., Li J., Xue X. 2013. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg2Ni alloys. Materials Characterization, 80, 21–27. https://doi.org/10.1016/j.matchar.2013.03.009
  • 11. Kwak Y.J., Lee S.H., Mumm D.R., Song M.Y. 2015. Development of a Mg-based hydrogen-storage material by addition of Ni and NbF5 via milling under hydrogen. International Journal of Hydrogen Energy, 40(35), 11908–11916. https://doi.org/10.1016/j.ijhydene.2015.04.111
  • 12. Li J., Li B., Shao H., Li W., Lin H. 2018. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts, 8(2). https://doi.org/10.3390/catal8020089
  • 13. Luo Q., Li J., Li B., Liu B., Shao H., Li Q. 2019. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. Journal of Magnesium and Alloys, 7(1), 58–71. https://doi.org/10.1016/j.jma.2018.12.001
  • 14. Malahayati, Ismail, Mursal, Jalil Z. 2018. The use of silicon oxide extracted from rice husk ash as catalyst in magnesium hydrides (MgH2) prepared by mechanical alloying method. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742–6596/1120/1/012061
  • 15. Malahayati M., Yufita E., Ismail I., Mursal M., Idroes R., Jalil Z. 2021. Hydrogen Desorption Properties of MgH2 + 10 wt% SiO2 + 5 wt% Ni Prepared by Planetary Ball Milling. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 280–285. https://doi.org/10.9767/bcrec.16.2.10220.280–285
  • 16. Malahayati, Nurmalita, Ismail, Machmud M.N., Jalil Z. 2021. Sorption behavior of MgH2-Ti for Hydrogen storage material prepared by high pressure milling. Journal of Physics: Conference Series, 1882(1), 012005. https://doi.org/10.1088/1742–6596/1882/1/012005
  • 17. Mustanir M., Jalil Z. 2009. Hydrogen Sorption Behavior of the MgH2-Ni Prepared by Reactive Mechanical Alloying. IPTEK The Journal for Technology and Science, 20(4). https://doi.org/10.12962/j20882033.v20i4.19
  • 18. Patternson A.L. 1939. Scherrer Formula. Physical review, 56, 978.
  • 19. Rahwanto A., Ismail I., Nurmalita N., Mustanir, Jalil Z. 2021. Nanoscale Ni as a catalyst in MgH2 for hydrogen storage material. Journal of Physics: Conference Series, 1882(1), 012010. https://doi.org/10.1088/1742–6596/1882/1/012010
  • 20. Rahwanto A., Jalil Z., Akhyar, Handoko E. 2020. Desorption properties of mechanically milled MgH2 with double catalysts Ni and SiC. IOP Conference Series: Materials Science and Engineering, 931(1). https://doi.org/10.1088/1757–899X/931/1/012012
  • 21. Rajabpour F., Raygan S., Abdizadeh H. 2016. The synergistic effect of catalysts on hydrogen desorption properties of MgH2–TiO2–NiO nanocomposite. Materials for Renewable and Sustainable Energy, 5(4), 1–9. https://doi.org/10.1007/s40243–016–0084-y
  • 22. Ranjbar A., Guo Z.P., Yu X.B., Attard D., Calka A., Liu H.K. 2009. Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 34(17), 7263–7268. https://doi.org/10.1016/j.ijhydene.2009.07.005
  • 23. Sadhasivam T., Kim H.T., Jung S., Roh S.H., Park J.H., Jung H.Y. 2017. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renewable and Sustainable Energy Reviews, 72, 523–534. https://doi.org/10.1016/j.rser.2017.01.107
  • 24. Sudibandriyo M., Wulan P.P.D.K., Prasodjo P. 2015. Adsorption capacity and its dynamic behavior of the hydrogen storage on carbon nanotubes. International Journal of Technology, 6(5), 1128–1136.
  • 25. Varin R.A., Czujko T., Wronski Z. 2006. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology. https://doi.org/10.1088/0957–4484/17/15/041
  • 26. Varin R.A., Czujko T., Wronski Z.S. 2009. Nanomaterials for solid state hydrogen storage. Nanomaterial for Solid State Hydrogen Storage.
  • 27. Yartys V.A., Lototskyy M.V., Akiba E., Albert R., Antonov V.E., Ares J.R., Baricco M., Bourgeois N., Buckley C.E., Bellosta von Colbe J.M., Crivello J.C., Cuevas F., Denys R.V., Dornheim M., Felderhoff M., Grant D.M., Hauback B.C., Humphries T.D., Jacob I., Zhu M. 2019. Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 44(15), 7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212
  • 28. Zeng L., Qing P., Cai F., Huang X., Liu H., Lan Z., Guo J. 2020. Enhanced Hydrogen Storage Properties of MgH2 Using a Ni and TiO2 Co-Doped Reduced Graphene Oxide Nanocomposite as a Catalyst. Frontiers in Chemistry, 8(March). https://doi.org/10.3389/fchem.2020.00207
  • 29. Zhang Q., Zang L., Huang Y., Gao P., Jiao L., Yuan H., Wang Y. 2017. Improved hydrogen storage properties of MgH2 with Ni-based compounds. International Journal of Hydrogen Energy, 42(38), 24247–24255. https://doi.org/10.1016/j.ijhydene.2017.07.220
  • 30. Zhang Y.H., Ablong-wen L.I. , Feng D.C., Gong P.F. Shang H.W., Guo S.H. 2017. Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Transactions of Nonferrous Metals Society of China (English Edition), 27(3), 551–561. https://doi.org/10.1016/S1003–6326(17)60061-X
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-842ae5ab-1ab3-45bc-a6eb-3297914feda3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.