Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Skiing depends on the external environment, in which material, energy and information are frequently exchanged, and this external environment greatly affects the quality of skiing’s existence. In this article, an ecosystem assessment algorithm based on ANN (Artificial Neural Network) is put forward. Based on this, a skiing development model under the influence of ecosystem factors is constructed to explore the influence of ecosystem factors on skiing development. The simulation results show that after many iterations, the error of this method is better than that of the comparison algorithm in ecosystem analysis, with the error reduced by 28.17 % and the recall rate reaching 94.65 %, which is improved by 16.88 % compared with the comparison algorithm. Therefore, this model can provide theoretical support for studying the influence of ecological and environmental factors on the growth of skiing. Based on the analysis of the characteristics of the regional landscape ecosystem, the eco-environmental impact assessment of the ski resort project predicts the impact of project construction on the regional landscape ecosystem. It explores ways and means to maintain the ecological integrity of the natural system to carry out project construction on the premise of protecting the local ecosystem and building a natural and artificial composite landscape ecosystem with reasonable structure and high efficiency.
Czasopismo
Rocznik
Tom
Strony
219--225
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
Bibliografia
- [1] Gertzbein SD, Khoury D, Bullington A. Thoracic and lumbar fractures associated with skiing and snowboarding injuries according to the AO comprehensive classification. Am J Sport Med. 2012;40(8):1750-4. DOI: 10.1177/0363546512449814.
- [2] Heinrich D, Bogert A, Nachbauer W. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: A simulation study. Scand J Med. Sci Sports. 2014;24(3):180-7. DOI: 10.1111/sms.12120.
- [3] Gilgien M. Characterisation of skiers’ mechanics, course setting and terrain geomorphology in World Cup Alpine Skiing using global navigation satellite systems: Injury risk, performance and methodological aspects. J Virol. 2014;88(9):4962-75. Available from: https://www.researchgate.net/publication/278025628_Characterisation_of_Skiers%27_Mechanics_Course_Setting_and_Terrain_Geomorphology_in_World_Cup_Alpine_Skiing_using_Global_Navigation_Satellite_Systems_Injury_Risk_Performance_and_Methodological_Aspects.
- [4] Lu S, Liu Y, Sundhararajan M. Evaluation system for the sustainable development of urban transportation and ecological environment based on SVM. J Intell Fuzzy Syst. 2018;34(2):831-8. DOI: 10.3233/JIFS-169376.
- [5] Praz C, Léger B, Kayser B. Energy expenditure of extreme competitive mountaineering skiing. Eur J Appl Physiol. 2014;114(10):2201-11. DOI: 10.1007/s00421-014-2939-1.
- [6] Coury T, Napoli AM, Wilson M. Injury patterns in recreational alpine skiing and snowboarding at a mountainside clinic. Wild Environ Med. 2013;24(4):417-21. DOI: 10.1016/j.wem.2013.07.002.
- [7] Hedl R, Houška J, Banaš M, Zeidler M. Effects of skiing and slope gradient on topsoil properties in an alpine environment. Pol J Ecol. 2012;60:381-9. Available from: https://www.researchgate.net/profile/RadimHedl/publication/235957247_Effects_of_skiing_and_slope_gradient_on_topsoil_properties_in_an_alpine_environment/links/00b495256dc347bf4f000000/Effects-of-skiing-and-slope-gradient-on-topsoil-propertiesin-an-alpine-environment.pdf.
- [8] Gilaberte-Búrdalo M, López-Martín F, Pino-Otín MR. Impacts of climate change on ski industry. Environ Sci Policy. 2014;44(44):51-61. DOI: 10.1016/j.envsci.2014.07.003.
- [9] Peng B, Huang Q, Elahi E, Wei G. Ecological environment vulnerability and driving force of Yangtze River Urban Agglomeration. Sustainability. 2019;11(23):6623. DOI: 10.3390/su11236623.
- [10] Ogunkunle CO, Fatoba PO. Pollution loads and the ecological risk assessment of soil heavy metals around a Mega Cement Factory in Southwest Nigeria. Pol J Environ Stud. 2013;22(2):487-93. Available from: http://www.pjoes.com/pdf-89002-22861?filename=Pollution%20Loads%20and%20the.pdf.
- [11] Escobedo FJ, Clerici N, Staudhammer CL. Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban Forestry Urban Greening. 2015;14(4):1040-53. DOI: 10.1016/j.ufug.2015.09.011.
- [12] Kasada M, Matsuba M, Miyashita T. Human interest meets biodiversity hotspots: A new systematic approach for urban ecosystem conservation. PLoS ONE. 2017;12(2):e0172670. DOI: 10.1371/journal.pone.0172670.
- [13] Chiu GS, Guttorp P, Westveld AH. Latent health factor index: a statistical modeling approach for ecological health assessment. Environmetrics. 2011;22(3):243-55. DOI: 10.1002/env.1055.
- [14] Martino SC, Scharf DM, Setodji CM, Shadel WG. Measuring exposure to protobacco marketing and media: a field study using ecological momentary assessment. Nicotine Tobacco Res. 2011;14(4):398-406. DOI: 10.1093/ntr/ntr223.
- [15] Fatemeh K, Faramarz M, Parvin F. Ecological risk assessment of agricultural pesticides throughout the Shadegan Wetland. Iran. J Agr Sci. 2012;27(4):137-8. DOI: 10.5539/jas.v4n5p109.
- [16] Liu C, Chen W, Hou Y. A new risk probability calculation method for urban ecological risk assessment. Environ Res Lett. 2020;15(2):024016. DOI: 10.1088/1748-9326/ab6667/meta.
- [17] Steenberg J, Millward AA, Duinker PN. Neighbourhood-scale urban forest ecosystem classification. J Environ Manage. 2015;163(11):134-45. DOI: 10.1016/j.jenvman.2015.08.008.
- [18] Liu G, Yang Z, Chen B. Analysis of resource and emission impacts: An emergy-based multiple spatial scale framework for urban ecological and economic evaluation. Entropy. 2011;13(3):36-41. DOI: 10.3390/e13030720.
- [19] Islam MS, Ahmed MK, Al-Mamun MH, Eaton DW. Human and ecological risks of metals in soils under different land-use types in an urban environment of Bangladesh. Pedosphere. 2020;30(2):201-13. DOI: 10.1016/S1002-0160(17)60395-3.
- [20] Koch NM, Matos P, Branquinho C. Selecting lichen functional traits as ecological indicators of the effects of urban environment. Sci Total Environ. 2019;654(3):705-13. DOI: 10.1016/j.scitotenv.2018.11.107.
- [21] Gao Y, Wang L, Zhang H. Intelligent urban ecological suitability system based on pattern recognition. J Intell Fuzzy Syst. 2020;39(5):1-8. DOI: 10.3233/JIFS-179986.
- [22] Wu CH, Tsai SB, Liu W, Shao XF, Xia YK, Wacławek M. Green environment and sustainable development: methods and applications. Ecol Chem Eng S. 2021;28(4):467-70. DOI: 10.2478/eces-2021-0030.
- [23] Liu W, Tsai SB, Wu CH, Shao X, Wacławek M. Corporate environmental management and sustainable operation: theory and application. Ecol Chem Eng S. 2022;29(3):283-5. DOI: 10.2478/eces-2022-0020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84288b1a-dfd2-4695-a133-dfca4add3a33