
JAISCR, 2020, Vol. 10, No. 1, pp. 15

ON TRAINING DEEP NEURAL NETWORKS USING
A STREAMING APPROACH

Piotr Duda1,∗, Maciej Jaworski1, Andrzej Cader2, Lipo Wang3

1Department of Computer Engineering, Częstochowa University of Technology,
Częstochowa, Poland

2Clark University, Worcester, USA and
Information Technology Institute, University of Social Sciences, Łódź, Poland

3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

∗E-mail: piotr.duda@iisi.pcz.pl

Submitted: 12th September 2019; Accepted: 18th November 2019

Abstract

In recent years, many deep learning methods, allowed for a significant improvement of
systems based on artificial intelligence methods. Their effectiveness results from an abil-
ity to analyze large labeled datasets. The price for such high accuracy is the long training
time, necessary to process such large amounts of data. On the other hand, along with the
increase in the number of collected data, the field of data stream analysis was developed.
It enables to process data immediately, with no need to store them. In this work, we de-
cided to take advantage of the benefits of data streaming in order to accelerate the training
of deep neural networks. The work includes an analysis of two approaches to network
learning, presented on the background of traditional stochastic and batch-based methods.
Keywords: deep learning; data streams; convolutional neural networks

1 Introduction

Deep learning has become very popular both as
a field of study for researchers [8, 24, 33] and as a
practical tool in many applications [12, 36]. Differ-
ent deep structures allow handling many real-world
tasks, with effectiveness unimaginable just a few
years ago. Among the others, convolutional neu-
ral networks allow processing big sets of images,
recurrent neural networks are a great tool for Natu-
ral Language Processing, and deep belief networks
are valuable in reconstructing the data.

The development of deep learning methods is
strongly related to the increasing number of stored
and labeled data. Despite the increase in comput-

ing speed, some deep neural networks still need a
couple of days to obtain their best performance.

The training of a neural network can be split
into two stages. The first one is a forward pass, in
which data inputted into a network are processed
by the subsequent layers until the final layer points
out the predicted class. The backward pass allows
changing the weights, associated with neuron pairs
of neighboring layers. Depending on the amount
of data used for weights updating in each learning
step, two main types of training procedures can be
distinguished: stochastic and batch-based. In the
stochastic one, the error of prediction is backprop-
agated after each single data element is passed for-
ward. In the batch-based approach, the weights are
updated after processing the whole training set. Re-

  – 26
10.2478/jaiscr-2020-0002



16 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

cently, the most common is the intermediate strat-
egy in which the neural network is learned using
mini-batches of data. This approach inherits ben-
efits from both stochastic and batch-based proce-
dures. The training set is partitioned into several
smaller subsets and the weights are updated after
processing each subset.

The use of an appropriate learning algorithm for
a multilayer neural network ensures that after each
epoch the accuracy calculated on the training set
will not decrease. On the other hand, all data from
the learning set are processed in each epoch, also
those that do not change weights in a significant
way. Consequently, the network wastes resources
on analyzing data that will not improve its effec-
tiveness.

In light of the above premises, we decided to
propose algorithms that process the training dataset
in a significantly different manner than it is stan-
dardly done. Instead of repeatedly processing the
entire training set, it is treated as a statistical popu-
lation. From this population, learning samples are
taken randomly in a continuous manner creating a
specific stream of data. To prevent the frequent
choices of data that do not affect a network’s weight
modification, additional value is assigned to each
data element. This value determines the probability
with which the data element is drawn to the stream.
To process the data stream prepared in such a way,
one of the stream data mining algorithms (SDM)
can be applied. The well-designed SDM algorithm
has to fulfill the following criteria:

– the dataset cannot be stored and considered as
a whole. The data elements should be analyzed
as fast as possible, and the memory should be
released for newly incoming data,

– the processing time should be as limited as pos-
sible, as the number of the new coming data can
be arbitrarily fast,

– the distribution of the data can change during
the processing of the stream. Such an event is
called a concept-drift and it can occur in every
moment. The algorithm should be able to adjust
to a time-varying environment.

The fulfillment of the above three criteria can also
be beneficial for algorithms that allow fast learning

of neural networks. While the first two (minimiz-
ing memory and processing time) do not require a
broader explanation, it is worth paying attention to
the third criterion, i.e. the adaptability of the algo-
rithm to a time-varying environment.

Figure 1. An example of the loss function values
obtained for subsequent epochs

The values of the loss function presented in Fig-
ure 1 demonstrate an exemplary case of training a
neural network, however, it vividly visualizes the
stages in which most neural networks are trained.
One can see that at the beginning stage of training
the network the loss function has obtained similar,
high, values. After about 20 epochs, the perfor-
mance of the neural network has critically changed
and the values of the loss function suddenly de-
creased. At this point, key data for neural net-
work learning may have lost their relevance, while
previously less important data could have become
more meaningful. The moment of such a change
can be indicated by an algorithm called the drift
detector (DD). The DDs are a family of SDM al-
gorithms whose major task is to indicate when the
changes in an environment (concept-drift) have oc-
curred. Combining DD with a learning algorithm
can reduce the number of epochs required to obtain
high accuracy.

The rest of the paper is organized as follows.
In Section 2 the related works about deep learning
methods and drift detectors are presented. The pro-
posed modifications of the training phase of neural
networks are described in Section 3. The results of
numerical experiments performed on convolutional
neural networks are presented in Section 4. Finally,
Section 5 presents conclusions and planned future
works.



17Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

cently, the most common is the intermediate strat-
egy in which the neural network is learned using
mini-batches of data. This approach inherits ben-
efits from both stochastic and batch-based proce-
dures. The training set is partitioned into several
smaller subsets and the weights are updated after
processing each subset.

The use of an appropriate learning algorithm for
a multilayer neural network ensures that after each
epoch the accuracy calculated on the training set
will not decrease. On the other hand, all data from
the learning set are processed in each epoch, also
those that do not change weights in a significant
way. Consequently, the network wastes resources
on analyzing data that will not improve its effec-
tiveness.

In light of the above premises, we decided to
propose algorithms that process the training dataset
in a significantly different manner than it is stan-
dardly done. Instead of repeatedly processing the
entire training set, it is treated as a statistical popu-
lation. From this population, learning samples are
taken randomly in a continuous manner creating a
specific stream of data. To prevent the frequent
choices of data that do not affect a network’s weight
modification, additional value is assigned to each
data element. This value determines the probability
with which the data element is drawn to the stream.
To process the data stream prepared in such a way,
one of the stream data mining algorithms (SDM)
can be applied. The well-designed SDM algorithm
has to fulfill the following criteria:

– the dataset cannot be stored and considered as
a whole. The data elements should be analyzed
as fast as possible, and the memory should be
released for newly incoming data,

– the processing time should be as limited as pos-
sible, as the number of the new coming data can
be arbitrarily fast,

– the distribution of the data can change during
the processing of the stream. Such an event is
called a concept-drift and it can occur in every
moment. The algorithm should be able to adjust
to a time-varying environment.

The fulfillment of the above three criteria can also
be beneficial for algorithms that allow fast learning

of neural networks. While the first two (minimiz-
ing memory and processing time) do not require a
broader explanation, it is worth paying attention to
the third criterion, i.e. the adaptability of the algo-
rithm to a time-varying environment.

Figure 1. An example of the loss function values
obtained for subsequent epochs

The values of the loss function presented in Fig-
ure 1 demonstrate an exemplary case of training a
neural network, however, it vividly visualizes the
stages in which most neural networks are trained.
One can see that at the beginning stage of training
the network the loss function has obtained similar,
high, values. After about 20 epochs, the perfor-
mance of the neural network has critically changed
and the values of the loss function suddenly de-
creased. At this point, key data for neural net-
work learning may have lost their relevance, while
previously less important data could have become
more meaningful. The moment of such a change
can be indicated by an algorithm called the drift
detector (DD). The DDs are a family of SDM al-
gorithms whose major task is to indicate when the
changes in an environment (concept-drift) have oc-
curred. Combining DD with a learning algorithm
can reduce the number of epochs required to obtain
high accuracy.

The rest of the paper is organized as follows.
In Section 2 the related works about deep learning
methods and drift detectors are presented. The pro-
posed modifications of the training phase of neural
networks are described in Section 3. The results of
numerical experiments performed on convolutional
neural networks are presented in Section 4. Finally,
Section 5 presents conclusions and planned future
works.

ON TRAINING DEEP NEURAL NETWORKS USING . . .

2 Related works

In this chapter, we recall the most significant
and the most recent papers about deep learning and
drift detectors.

In recent years, the attention of machine learn-
ing researchers focused mainly on the deep neu-
ral networks [4, 19]. They are designed to solve
hard AI problems, like image or speech recogni-
tion. In the literature one can find a variety of
deep neural network structures and architectures.
Each of them is designed to solve a specific task.
For example, Convolutional Neural Networks and
their derivatives are successfully used in image pro-
cessing tasks. They usually consists of stacks of
convolutional and sub-sampling layers, often fol-
lowed by several dense layers. Some important
example CNNs are LeNet [34], AlexNet [32] or
VGG Net [40]. More recent architectures are, for
example, DenseNet [25], GoogLeNet with Incep-
tion units [41], and Residual Networks [20] which
contains connection between neurons from non-
neighbouring layers. The mentioned CNN struc-
tures provide state-of-the-art performance on differ-
ent benchmarks for object recognition tasks.

Recurrent Neural Networks are another type of
neural network architecture. It allows processing
sequences of data over time. The main problem in
learning RNNs is the vanishing (or exploding) gra-
dient [23]. The solution of the exploding gradient is
to clip the value to some threshold if the gradients
become too large. To solve the vanishing gradient
problem, new neural units have been proposed. The
first one is the Long Short-Term Memory (LSTM)
[16], which contains gates responsible for modify-
ing the value in the hidden neuron. Another type is
the Gated Recurrent Unit (GRU) [9]. They are more
simple than LSTMs and require less computational
effort. Therefore, they are at this moment the most
popular recurrent neurons used in deep learning ap-
plications.

The architectures presented above are mainly
used for supervised learning tasks. However,
there are also structures applicable for unsupervised
learning, for example autoencoders [5], which learn
how to reconstruct original data. There exists a vari-
ety of autoencoder types in the literature. The most
popular are denoising autoencoders [42], in which
the noise is introduced to original data during learn-

ing. Enforcing sparsity in the encoder layer leads
to sparse autoencoders. In this type of autoencoder
the size of the encoder layer can be higher than the
input dimensionality. Another interesting type is
the variational auto-encoder [30]. The deep neu-
ral structures for unsupervised learning tasks can
be also formed based on the Restricted Boltzmann
Machines [22] (RBM). The RBMs are two-layered
networks which can learn good models of data dis-
tributions. They can be formed into stacks by con-
necting the visible layer of one RBM to the hidden
layer of the previous one. An example of such a
structure is the Deep Belief Networks (DBN) [21].

It should be also noted that several authors tried
to merge the fields of deep learning and data stream
mining. In [7] the authors combined the evolv-
ing deep neural network with the Least Squares
Support Vector Machine. Deep neural networks
were also successfully applied in semi-supervised
learning task in the context of streamming data.
In [26] the Deep Hybrid Boltzmann Machines and
Denoising Autoencoders were proposed. It was
demonstrated how such structures can used for on-
line learning from data streams. In [39] the idea
was to train the Deep Belief Network in unsuper-
vised manner based on the unlabeled data from the
stream. Then, few available labeled elements were
used to occasionally fine-tune the model to the cur-
rent data concept. In [28] and [27] the Authors pro-
posed to apply the RBM as a concept drift detector.
It was demonstrated that the properly learned RBM
can be use to monitor possible changes in under-
lying data distribution. These method was further
analyzed from the resource-awareness perspective
in [29].

Another area that has recently attracted the
attention of researchers is data stream analysis.
Among the others, the methods to indicate the
changes in an environment have been strongly in-
vestigated. The Drift Detection Method [15], the
DDM algorithm, monitors the correctness of classi-
fication by the current model. Treating observations
as a result of Bernoulli trials, the authors propose
a statistical test to inform about warning or alarm
state. The idea was improved in [3] as the EDDM
algorithm. The Dynamic Streaming Random Forest
(DSRF) was proposed in [2]. In this approach, after
the initial phase of the subsequently generating a fi-
nite number of trees, the algorithm update statistics



18 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

defining thresholds for decision trees construction.
Then the algorithm update forest with fixed percent
of the trees. An algorithm measures entropy of in-
coming data as a drift detector. If the drift is de-
tected, all the parameters of the algorithm are reset
to initial values, and the algorithm replaces a spe-
cific number of trees in the forest, which number
depends on a value of measured entropy. Its idea
are extended in a paper [1]. In paper [18] the author
propose the Adaptive Random Forests algorithm,
which combine classical random forest procesure
with Hoeffding’s decision trees [14]. To react on
changes in data stream a procedure based on AD-
WIN algorithm [6] and Page-Hinkley test [38] can
be applied. In [10], the authors proposed WSTD al-
gorithm, which applied Wilcoxon rank sum statisti-
cal test to improve false positive detection. In [11],
the authors proposed to computing multiple model
explanations over time and observing the magni-
tudes of their changes. The application of unsuper-
vised methods, motivated by the statistical learning
theory, are investigated in [37].

For more recent information about streaming al-
gorithms and drift detectors the reader is referred to
[13, 17] and [31].

3 Training techniques

In this Section, the mathematical formalism re-
lated to the presented methods will be introduced.
Next, in the following subsections, the proposed
methods to learn neural networks will be described.

Let T be a training set and N be a number of
elements in it. Originally this set consists of d-
dimensional feature vectors Xi and labels ci, for
i = 1, . . . ,N

T = {(Xi,ci)|i = 1, . . . ,N,Xi ∈ A,ci ∈ L}, (1)

where A is a d-dimensional feature space, and L is
a finite set of labels. Now, let us add to these ele-
ments additional values, specifying the probability
of drawing (pod) each element to the stream

T S = {((Xi,ci),vi)|(Xi,ci) ∈ T,vi ∈ (0,1)}. (2)

Now, based on the set T S one can define a

stream St consisting of t data elements as follows

St =(Y1, . . . ,Yt |Yi =(Xji ,c ji),1≤ i≤ t,1≤ ji ≤N).
(3)

It is worth noticing that Yi ∈ St , for i = 1,2, ..., form
a sequence of independent random variables.

Now, let us consider a neural network f : A →
L. Without loss of generality, we can assume that f
is an l-layered neural network

f (X) = φl ◦φl−1 ◦ · · · ◦φ1(X), (4)

where X is the input vector. A single layer φ j :
Zj → Zj+1, where Zj is an Nj dimensional space of
( j−1)-th layer output values, Z0 = A, and Zl = L,
can be defined as follows

φ j(z) = [ρ1
j(∑

Nj
i=1 wi,1zi +b1), . . . ,

ρNj+1
j (∑Nj

i=1 wi,Nj+1zi +bNj+1)] (5)

where z = [z1, . . . ,zNj ] ∈ Zj, wi,m is a weight be-
tween the i-th neuron of the ( j−1)-th layer and the
m-th neuron of the j-th layer, ρm

j is an activation
function for the m-th neuron on the j-th layer and
bm is the bias for the m-th vector.

During the backpropagation phase, the weights
of each neuron on every layer are updated according
to the following formula.

wi,m := wi,m −η
∂E

∂wi,m
, (6)

where η> 0 is the learning rate and E is a loss func-
tion. The procedure of computing the gradient of
the loss function depends on the applied training
strategy. In a stochastic approach, the gradient is
computed based on a single observation. In a batch-
based approach, the gradient is taken as an average
over all the elements in the batch.

3.1 Boosting based training approach

In the proposed method we apply the idea of
boosting and we use the strategy to train the neu-
ral network based on mini-batches. The mini-batch
Bτ consists of n elements recently taken from the
stream

Bτ = (Yt−n, . . . ,Yt), (7)

where τ = 1,2, . . . , is an index of the following
mini-batches.

The training of neural networks proceeds in a
standard way. Every data separately is processed



19Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

defining thresholds for decision trees construction.
Then the algorithm update forest with fixed percent
of the trees. An algorithm measures entropy of in-
coming data as a drift detector. If the drift is de-
tected, all the parameters of the algorithm are reset
to initial values, and the algorithm replaces a spe-
cific number of trees in the forest, which number
depends on a value of measured entropy. Its idea
are extended in a paper [1]. In paper [18] the author
propose the Adaptive Random Forests algorithm,
which combine classical random forest procesure
with Hoeffding’s decision trees [14]. To react on
changes in data stream a procedure based on AD-
WIN algorithm [6] and Page-Hinkley test [38] can
be applied. In [10], the authors proposed WSTD al-
gorithm, which applied Wilcoxon rank sum statisti-
cal test to improve false positive detection. In [11],
the authors proposed to computing multiple model
explanations over time and observing the magni-
tudes of their changes. The application of unsuper-
vised methods, motivated by the statistical learning
theory, are investigated in [37].

For more recent information about streaming al-
gorithms and drift detectors the reader is referred to
[13, 17] and [31].

3 Training techniques

In this Section, the mathematical formalism re-
lated to the presented methods will be introduced.
Next, in the following subsections, the proposed
methods to learn neural networks will be described.

Let T be a training set and N be a number of
elements in it. Originally this set consists of d-
dimensional feature vectors Xi and labels ci, for
i = 1, . . . ,N

T = {(Xi,ci)|i = 1, . . . ,N,Xi ∈ A,ci ∈ L}, (1)

where A is a d-dimensional feature space, and L is
a finite set of labels. Now, let us add to these ele-
ments additional values, specifying the probability
of drawing (pod) each element to the stream

T S = {((Xi,ci),vi)|(Xi,ci) ∈ T,vi ∈ (0,1)}. (2)

Now, based on the set T S one can define a

stream St consisting of t data elements as follows

St =(Y1, . . . ,Yt |Yi =(Xji ,c ji),1≤ i≤ t,1≤ ji ≤N).
(3)

It is worth noticing that Yi ∈ St , for i = 1,2, ..., form
a sequence of independent random variables.

Now, let us consider a neural network f : A →
L. Without loss of generality, we can assume that f
is an l-layered neural network

f (X) = φl ◦φl−1 ◦ · · · ◦φ1(X), (4)

where X is the input vector. A single layer φ j :
Zj → Zj+1, where Zj is an Nj dimensional space of
( j−1)-th layer output values, Z0 = A, and Zl = L,
can be defined as follows

φ j(z) = [ρ1
j(∑

Nj
i=1 wi,1zi +b1), . . . ,

ρNj+1
j (∑Nj

i=1 wi,Nj+1zi +bNj+1)] (5)

where z = [z1, . . . ,zNj ] ∈ Zj, wi,m is a weight be-
tween the i-th neuron of the ( j−1)-th layer and the
m-th neuron of the j-th layer, ρm

j is an activation
function for the m-th neuron on the j-th layer and
bm is the bias for the m-th vector.

During the backpropagation phase, the weights
of each neuron on every layer are updated according
to the following formula.

wi,m := wi,m −η
∂E

∂wi,m
, (6)

where η> 0 is the learning rate and E is a loss func-
tion. The procedure of computing the gradient of
the loss function depends on the applied training
strategy. In a stochastic approach, the gradient is
computed based on a single observation. In a batch-
based approach, the gradient is taken as an average
over all the elements in the batch.

3.1 Boosting based training approach

In the proposed method we apply the idea of
boosting and we use the strategy to train the neu-
ral network based on mini-batches. The mini-batch
Bτ consists of n elements recently taken from the
stream

Bτ = (Yt−n, . . . ,Yt), (7)

where τ = 1,2, . . . , is an index of the following
mini-batches.

The training of neural networks proceeds in a
standard way. Every data separately is processed

ON TRAINING DEEP NEURAL NETWORKS USING . . .

in a forward pass (after which the value of loss
function L(Xi) is computed) and in a backward pass
(which is used to compute the gradients of weights).
After computing errors and gradients for the last
layer, the probabilities of drawing elements from
the training set to the stream are updated. We con-
sider three approaches.

The Only Wrongly Classified (OWC) approach

In this approach, only those data elements
that have been misclassified have their pod values
changed. During the forward phase, the predicted
class is established. If it differs from the expected
one, a new weight v′i is set to fixed number

v′i =

{
λ, f (Xi) �= ci

vi, otherwise.
(8)

An exemplary value of λ can be λ = 1/n.

Loss Based (LB) approach

In this approach, every data element from a
mini-batch changes its weight v′i according to the
value of loss function L(Xi). It is expected that
correctly classified elements obtain lower values of
loss function than the misclassified ones. In conse-
quence, the correctly classified elements will have
lower weights and will be rarely chosen to the mini-
batches in the next steps

v′i = L(Xi)/Mi, (9)

where Mi indicates the number of times the −i-th
data element was drawn in the past. The denomina-
tor defined in such a way prevents from drawing the
same element repeatedly, which can be problematic
if the network cannot correctly classify some ele-
ments.

Normalized Loss Based (NLB) approach

Recently, one of the most commonly used ac-
tivation functions is the ReLU. One of the conse-
quences of its application is the fact some loss func-
tions, like the mean squared error, can obtain arbi-
trarily high values. This may upset the proportion
of pod values. For this reason, normalization of the
loss values can be beneficial. We proposed to apply
the hyperbolic tangent which transforms big values
of loss function close to 1, and the small ones close
to 0.

v′i = tanh(L(Xi))/Mi, (10)

where the meaning of Mi is the same as in (9).

It should be noted that in none of the above-
mentioned approaches v′i values represent the prob-
ability mass since function since it is not guaran-
teed that they sum up to 1. To ensure this property
the pods should be normalized after processing the
whole mini-batch in the following way

vi =

{
v′i/Z, for xi ∈ B
vi/Z, for xi ∈ T\B

(11)

where Z is a normalization factor, given as

Z = ∑
{v′i|Xi∈T}

v′i. (12)

After processing one mini-batch of data, an-
other one is gathered and the procedure is repeated
until the stopping condition is fulfilled.

The pseudocode of the proposed procedure
called the Boosting Based Training Algorithm
(BBTA) is presented in Algorithm 1 for the OWC
approach and in Algorithm 2 for the LB and the
NLB approaches.

Algorithm 1. The BBTA - OWC algorithm

Algorithm 2. The BBTA - LB/NLB algorithm

classified elements obtain lower values of loss func-
tion than the misclassified ones. In consequence, the
correctly classified elements will have lower weights
and will be rarely chosen to the mini-batches in the
next steps

v′i = L(Xi)/Mi, (9)

where Mi indicates the number of times the −i-th
data element was drawn in the past. The denomi-
nator defined in such a way prevents from drawing
the same element repeatedly, which can be problem-
atic if the network cannot correctly classify some el-
ements.

Normalized Loss Based (NLB) approach
Recently, one of the most commonly used activa-

tion functions is the ReLU. One of the consequences
of its application is the fact some loss functions, like
the mean squared error, can obtain arbitrarily high
values. This may upset the proportion of pod values.
For this reason, normalization of the loss values can
be beneficial. We proposed to apply the hyperbolic
tangent which transforms big values of loss function
close to 1, and the small ones close to 0.

v′i = tanh(L(Xi))/Mi, (10)

where the meaning of Mi is the same as in (9).
It should be noted that in none of the above-

mentioned approaches v′i values represent the prob-
ability mass since function since it is not guaran-
teed that they sum up to 1. To ensure this property
the pods should be normalized after processing the
whole mini-batch in the following way

vi =

{
v′i/Z, for xi ∈ B
vi/Z, for xi ∈ T\B

(11)

where Z is a normalization factor, given as

Z = ∑
{v′i|Xi∈T}

v′i. (12)

.

After processing one mini-batch of data, another
one is gathered and the procedure is repeated until
the stopping condition is fulfilled.

The pseudocode of the proposed procedure called
the Boosting Based Training Algorithm (BBTA) is
presented in Alg. ?? for the OWC approach and in
Alg. ?? for the LB and the NLB approaches.

Input: S - data stream, M - batch size, λ
1 Collect a new batch B from the stream S;
2 for every data element in B do
3 Train the network on current element

Calculate a predicted class;
4 if predicted class == expected class then
5 Update vi according to (8);

6 for every data element in T do
7 Update pods according to (11)

8 Return to line 1;

Input: S - data stream, M - batch size
1 Collect a new batch B from the stream S;
2 for every data element in B do
3 Increase counter of drawn of the current

element Train the network on current
element Compute loss function for a
current element;

4 Update vi according to (9) or (10)

5 for every data element in T do
6 Update pods according to (11)

7 Return to line 1;

6

classified elements obtain lower values of loss func-
tion than the misclassified ones. In consequence, the
correctly classified elements will have lower weights
and will be rarely chosen to the mini-batches in the
next steps

v′i = L(Xi)/Mi, (9)

where Mi indicates the number of times the −i-th
data element was drawn in the past. The denomi-
nator defined in such a way prevents from drawing
the same element repeatedly, which can be problem-
atic if the network cannot correctly classify some el-
ements.

Normalized Loss Based (NLB) approach
Recently, one of the most commonly used activa-

tion functions is the ReLU. One of the consequences
of its application is the fact some loss functions, like
the mean squared error, can obtain arbitrarily high
values. This may upset the proportion of pod values.
For this reason, normalization of the loss values can
be beneficial. We proposed to apply the hyperbolic
tangent which transforms big values of loss function
close to 1, and the small ones close to 0.

v′i = tanh(L(Xi))/Mi, (10)

where the meaning of Mi is the same as in (9).
It should be noted that in none of the above-

mentioned approaches v′i values represent the prob-
ability mass since function since it is not guaran-
teed that they sum up to 1. To ensure this property
the pods should be normalized after processing the
whole mini-batch in the following way

vi =

{
v′i/Z, for xi ∈ B
vi/Z, for xi ∈ T\B

(11)

where Z is a normalization factor, given as

Z = ∑
{v′i|Xi∈T}

v′i. (12)

.

After processing one mini-batch of data, another
one is gathered and the procedure is repeated until
the stopping condition is fulfilled.

The pseudocode of the proposed procedure called
the Boosting Based Training Algorithm (BBTA) is
presented in Alg. ?? for the OWC approach and in
Alg. ?? for the LB and the NLB approaches.

Input: S - data stream, M - batch size, λ
1 Collect a new batch B from the stream S;
2 for every data element in B do
3 Train the network on current element

Calculate a predicted class;
4 if predicted class == expected class then
5 Update vi according to (8);

6 for every data element in T do
7 Update pods according to (11)

8 Return to line 1;

Input: S - data stream, M - batch size
1 Collect a new batch B from the stream S;
2 for every data element in B do
3 Increase counter of drawn of the current

element Train the network on current
element Compute loss function for a
current element;

4 Update vi according to (9) or (10)

5 for every data element in T do
6 Update pods according to (11)

7 Return to line 1;

6



20 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

3.2 Bagging based training with drift de-
tector

The algorithms proposed in the previous Sub-
section has two strong drawbacks. First, as new
values of pods are recalculated in a single step only
for part of data, some problems can occur. After
processing every mini-batch, pods of every unused
data become depreciated. In consequence, a lot of
time may pass until those data elements are sampled
again. Secondly, if the drawn data have huge loss
function values and they are still misclassified after
being processed multiple times, then they can stop
the learning process, especially in the case of the LB
and NLB approaches. The data would have huge
pod values and the subsequent mini-batch gener-
ated from the stream would be composed of the
same data. In such a case, the network would be
adjusted only to those data and it would quickly be-
come overfitted.

Algorithm 3. The BBTA - LB/NLB algorithm

Based on the aforementioned motivation we de-
cided to add a drift detector to indicate whether
the neural network performance has changed sig-
nificantly or not. The proposed procedure, called
BBADD, is presented in Figure 3. If the algorithm
detects changes in the performance of the neural
network, it resumes all the pods to equal values.

The CUSUM algorithm was applied as a drift
detector. To monitor changes in loss function val-
ues the following value is computed

Cus0 = 0,

Cusi = max(0,Cusi−1 +L(Bi−1)−L(Bi)−α),
(13)

for i = 1,2, . . . , where L(Bi) is a value of loss func-
tion in the i-th mini-bath and α is a fixed parameter.
The drift is detected when Cusi exceeds the value of
threshold λC.

The proposed Boosting based training algo-
rithm with a drift detector, called BBTADD, mon-
itors changes in loss function values. To prevent
overfitting, it requires an additional validation set,
which is used to compute monitored Cus values.
The details of the BBTADD algorithm are presented
in Algorithm 3.

4 Experimental results

To demonstrate the performance of the pro-
posed algorithms, the experiments were performed
on the MNIST dataset [35], which contains 60000
gray-scale images of handwritten digits. Each im-
age is of size 28×28. In experiments, we were gen-
erating a data stream from this dataset. Firstly, the
data were mixed. Then, the mini-batches of size n
were randomly collected.

To carry on the simulations a convolutional neu-
ral network was applied. The network consists of
five layers. The first layer contains 32 channels.
The kernel size was set to 3 × 3 and stride equal
to one. The second layer has 64 channels, and the
kernel size and strides are the same as in the first
layer. Next, the max-pooling layer, with a filter set
to 2× 2 is inserted. After that, the dropout mech-
anism is applied with a probability factor equal to
0.25. The fourth layer of the network is a first fully
connected layer, consisting of 128 neurons. The fi-
nal layer, preceded by the dropout mechanism with
a probability factor set to 0.5, contains 10 neurons.
In the last layer, the softmax activation function was
applied, whereas in the rest of the layers the ReLU
activation functions were used. The errors were
computed based on categorical cross-entropy loss
function and the Adadelta optimizer [43] was used
during the training phase. The details of the net-
work are present in Figure 2

3.2 Bagging based training with drift detec-
tor

The algorithms proposed in the previous subsection
has two strong drawbacks. First, as new values of
pods are recalculated in a single step only for part
of data, some problems can occur. After processing
every mini-batch, pods of every unused data become
depreciated. In consequence, a lot of time may pass
until those data elements are sampled again. Sec-
ondly, if the drawn data have huge loss function val-
ues and they are still misclassified after being pro-
cessed multiple times, then they can stop the learning
process, especially in the case of the LB and NLB ap-
proaches. The data would have huge pod values and
the subsequent mini-batch generated from the stream
would be composed of the same data. In such a case,
the network would be adjusted only to those data and
it would quickly become overfitted.

Based on the aforementioned motivation we de-
cided to add a drift detector to indicate whether
the neural network performance has changed sig-
nificantly or not. The proposed procedure, called
BBADD, is presented in Fig. 16. If the algorithm
detects changes in the performance of the neural net-
work, it resumes all the pods to equal values.

The CUSUM algorithm was applied as a drift de-
tector. To monitor changes in loss function values
the following value is computed

Cus0 = 0,

Cusi = max(0,Cusi−1 +L(Bi−1)−L(Bi)−α),
(13)

for i = 1,2, . . . , where L(Bi) is a value of loss func-
tion in the i-th mini-bath and α is a fixed parameter.
The drift is detected when Cusi exceeds the value of
threshold λC.

The proposed Boosting based training algorithm
with a drift detector, called BBTADD, monitors

changes in loss function values. To prevent overfit-
ting, it requires an additional validation set, which is
used to compute monitored Cus values. The details
of the BBTADD algorithm are presented in Alg. 16.

Input: S - data stream, M - batch size, α, λC

1 CuSum = 0 ;
2 Collect a new batch B from the stream S;
3 for every data element in B do
4 Increase counter of drawn of the current

element;
5 Train the network on current element;
6 Compute loss function for a current

element;
7 Update vi according to (9) or (10)

8 for every data element in T do
9 Update pods according to (11)

10 Compute loss function on a validation set;
11 Update CuSum according to (13);
12 if CuSum > λC then
13 Reinitialize pod’s values;
14 Return to line 1;

15 else
16 Return to line 2;

4 Experimental results

To demonstrate the performance of the proposed al-
gorithms, the experiments were performed on the
MNIST dataset [35], which contains 60000 gray-
scale images of handwritten digits. Each image is
of size 28× 28. In experiments, we were generat-
ing a data stream from this dataset. Firstly, the data
were mixed. Then, the mini-batches of size n were
randomly collected.

To carry on the simulations a convolutional neu-
ral network was applied. The network consists of

7



21Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

3.2 Bagging based training with drift de-
tector

The algorithms proposed in the previous Sub-
section has two strong drawbacks. First, as new
values of pods are recalculated in a single step only
for part of data, some problems can occur. After
processing every mini-batch, pods of every unused
data become depreciated. In consequence, a lot of
time may pass until those data elements are sampled
again. Secondly, if the drawn data have huge loss
function values and they are still misclassified after
being processed multiple times, then they can stop
the learning process, especially in the case of the LB
and NLB approaches. The data would have huge
pod values and the subsequent mini-batch gener-
ated from the stream would be composed of the
same data. In such a case, the network would be
adjusted only to those data and it would quickly be-
come overfitted.

Algorithm 3. The BBTA - LB/NLB algorithm

Based on the aforementioned motivation we de-
cided to add a drift detector to indicate whether
the neural network performance has changed sig-
nificantly or not. The proposed procedure, called
BBADD, is presented in Figure 3. If the algorithm
detects changes in the performance of the neural
network, it resumes all the pods to equal values.

The CUSUM algorithm was applied as a drift
detector. To monitor changes in loss function val-
ues the following value is computed

Cus0 = 0,

Cusi = max(0,Cusi−1 +L(Bi−1)−L(Bi)−α),
(13)

for i = 1,2, . . . , where L(Bi) is a value of loss func-
tion in the i-th mini-bath and α is a fixed parameter.
The drift is detected when Cusi exceeds the value of
threshold λC.

The proposed Boosting based training algo-
rithm with a drift detector, called BBTADD, mon-
itors changes in loss function values. To prevent
overfitting, it requires an additional validation set,
which is used to compute monitored Cus values.
The details of the BBTADD algorithm are presented
in Algorithm 3.

4 Experimental results

To demonstrate the performance of the pro-
posed algorithms, the experiments were performed
on the MNIST dataset [35], which contains 60000
gray-scale images of handwritten digits. Each im-
age is of size 28×28. In experiments, we were gen-
erating a data stream from this dataset. Firstly, the
data were mixed. Then, the mini-batches of size n
were randomly collected.

To carry on the simulations a convolutional neu-
ral network was applied. The network consists of
five layers. The first layer contains 32 channels.
The kernel size was set to 3 × 3 and stride equal
to one. The second layer has 64 channels, and the
kernel size and strides are the same as in the first
layer. Next, the max-pooling layer, with a filter set
to 2× 2 is inserted. After that, the dropout mech-
anism is applied with a probability factor equal to
0.25. The fourth layer of the network is a first fully
connected layer, consisting of 128 neurons. The fi-
nal layer, preceded by the dropout mechanism with
a probability factor set to 0.5, contains 10 neurons.
In the last layer, the softmax activation function was
applied, whereas in the rest of the layers the ReLU
activation functions were used. The errors were
computed based on categorical cross-entropy loss
function and the Adadelta optimizer [43] was used
during the training phase. The details of the net-
work are present in Figure 2

ON TRAINING DEEP NEURAL NETWORKS USING . . .

Figure 2. Summary of CNN.

4.1 Analysis of BBT algorithm

To demonstrate the ability of the BBTA -
OWC/LB/NLB algorithms, the obtained results are
compared with the classical mini-batch learning ap-
proach (MB) and with a streaming approach (SMB)
that does not include pod values. In the case of the
MB method, the training set is divided into equally
sized mini-batches. The subsequent mini-batches
are applied to train the neural network. After the
whole training set is processed, the procedure is re-
peated until the algorithm meets the stopping cri-
teria. In the case of the SMB approach, the mini-
batches are continuously generated from the train-
ing set. In each iteration, every data element has an
equal chance to be found in a mini-batch.

One of the crucial steps experiment preparation
is to establish a mini-batch size. The bigger val-
ues result in faster training. On the other hand, the
smaller values extend the time of computation but
allow checking more network configurations. In the
experiments, we investigated three different mini-
batch sizes: n = 32, n = 100 and n = 1000. All
simulations were run for ten epochs. Hence the total
number of processed mini-batches is equal to 1875,
6000 and 600 for n = 32, n = 100 and n = 1000, re-
spectively. To prevent chaotic behavior during the
initial steps of training, the CNN was pre-trained in
a classical manner at the beginning of each simula-
tion.

Figure 3. Loss function computed on mini-batches
of various sizes: a) n = 32, b) n = 100, c)

n = 1000.

The values of the loss function obtained on
subsequent mini-batches are presented in Figure
3. During the pre-training phase, each method
presents the same values. After that, the influence
of various approaches on the neural network per-
formance differs significantly. Regardless of the
applied mini-batch size, the MB and the SMB ap-
proaches demonstrate similar results, worse than

intermediate case (n = 100), its loss function values
are somewhere between the values obtained for the
other considered approaches. For very large mini-
batches (n = 1000) the OWC competes for the best
score with the NLB. The initial picture of a well-
functioning algorithm changes to the worse when we
look at the values of the loss function calculated on
the test set, see Fig. 3.

One can see that in the case of the MB, the SMB,
and the OWC methods, the convergence of their loss
values seems to be similar to that presented in Fig.
3. In the case of the LB and the NLB, after the ini-
tial big decrease in the loss function value, it starts to
increase. The coincidence of low loss function val-
ues for training data and high values obtained for the
test set indicate that in the cases the LB and NLB
methods a small sample of data from the training
set might obtain relatively high pod values. Con-
sequently, the same data were drawn to the mini-
batches. The model adjusted itself to those data and
it lost the ability to generalize the knowledge. It is
worth noticing that the problem occurred only in two
cases, i.e. n = 32 and n = 100. The sufficiently large
size of mini-batches solves this problem.

The accuracies obtained by the CNN, in the case
of n = 32, are presented in Tables 1 and 2 for train-
ing and test data, respectively. The tables include
the mean accuracy over the whole training process,
the maximal accuracy obtained during training and
the final accuracy obtained after processing the last
mini-batch. One can see that very good results of the
LB and the NLB methods obtained for the training
data and weak performance for the test set confirm
the need for modification of these techniques.

4.2 Analysis of BBTADD algorithm

The simulations presented in the previous section
demonstrate the need for modification of the BBAT
LB and NLB algorithms. Now, the performance of

(a) n = 32

(b) n = 100

(c) n = 1000

Figure 3: Loss function computed on mini-batches
of various sizes: a) n = 32, b) n = 100, c) n = 1000.

9



22 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

the other methods. It is important to note that the
big differences between values obtained on the con-
secutive mini-batches are a consequence of their
randomness. It seems that the LB and the NLB
algorithms also achieve close values. However, it
is worth noticing, that at the end of the experiment
the loss function values for the NLB are always the
lowest ones. The behavior of the OWC approach
is the most sensitive to the mini-batch size. For
small ones (n = 32) its performance is similar to
the MB and the SMB methods. In the intermediate
case (n = 100), its loss function values are some-
where between the values obtained for the other
considered approaches. For very large mini-batches
(n = 1000) the OWC competes for the best score
with the NLB.

The initial picture of a well-functioning algo-
rithm changes to the worse when we look at the
values of the loss function calculated on the test set,
see Figure 3.

One can see that in the case of the MB, the
SMB, and the OWC methods, the convergence of
their loss values seems to be similar to that pre-
sented in Figure 3. In the case of the LB and the
NLB, after the initial big decrease in the loss func-
tion value, it starts to increase. The coincidence of
low loss function values for training data and high
values obtained for the test set indicate that in the
cases the LB and NLB methods a small sample of
data from the training set might obtain relatively
high pod values. Consequently, the same data were
drawn to the mini-batches. The model adjusted it-
self to those data and it lost the ability to generalize
the knowledge. It is worth noticing that the prob-
lem occurred only in two cases, i.e. n = 32 and
n = 100. The sufficiently large size of mini-batches
solves this problem.

The accuracies obtained by the CNN, in the
case of n = 32, are presented in Tables 1 and 2
for training and test data, respectively. The Tables
include the mean accuracy over the whole train-
ing process, the maximal accuracy obtained during
training and the final accuracy obtained after pro-
cessing the last mini-batch. One can see that very
good results of the LB and the NLB methods ob-
tained for the training data and weak performance
for the test set confirm the need for modification of
these techniques.

Figure 4. Loss function computed on the test data
for various sizes of mini-batches: a) n = 32, b)

n = 100, c) n = 1000.

Table 1. The mean, maximal and final accuracies
obtained by various algorithms on the training

mini-batches.

Algorithm Mean Maximal Final
MB 0.7599 1.0 0.9375

SMB 0.7608 1.0 0.8125
OWC 0.7559 1.0 1.0

LB 0.89154 1.0 1.0
NLB 0.89205 1.0 1.0

(a) n = 32

(b) n = 100

(c) n = 1000

Figure 4: Loss function computed on the test data for
various sizes of mini-batches: a) n = 32, b) n = 100,
c) n = 1000.

Table 1: The mean, maximal and final accuracies
obtained by various algorithms on the training mini-
batches.

Algorithm Mean Maximal Final
MB 0.7599 1.0 0.9375

SMB 0.7608 1.0 0.8125
OWC 0.7559 1.0 1.0

LB 0.89154 1.0 1.0

NLB 0.89205 1.0 1.0

Table 2: The mean, maximal and final accuracies ob-
tained by various algorithms on the test sets.

Algorithm Mean Maximal Final
MB 0.76779 0.88040 0.87949

SMB 0.76855 0.88179 0.88169

OWC 0.77530 0.86720 0.86690
LB 0.59989 0.72610 0.59100

NLB 0.66487 0.71899 0.69470

10



23Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

the other methods. It is important to note that the
big differences between values obtained on the con-
secutive mini-batches are a consequence of their
randomness. It seems that the LB and the NLB
algorithms also achieve close values. However, it
is worth noticing, that at the end of the experiment
the loss function values for the NLB are always the
lowest ones. The behavior of the OWC approach
is the most sensitive to the mini-batch size. For
small ones (n = 32) its performance is similar to
the MB and the SMB methods. In the intermediate
case (n = 100), its loss function values are some-
where between the values obtained for the other
considered approaches. For very large mini-batches
(n = 1000) the OWC competes for the best score
with the NLB.

The initial picture of a well-functioning algo-
rithm changes to the worse when we look at the
values of the loss function calculated on the test set,
see Figure 3.

One can see that in the case of the MB, the
SMB, and the OWC methods, the convergence of
their loss values seems to be similar to that pre-
sented in Figure 3. In the case of the LB and the
NLB, after the initial big decrease in the loss func-
tion value, it starts to increase. The coincidence of
low loss function values for training data and high
values obtained for the test set indicate that in the
cases the LB and NLB methods a small sample of
data from the training set might obtain relatively
high pod values. Consequently, the same data were
drawn to the mini-batches. The model adjusted it-
self to those data and it lost the ability to generalize
the knowledge. It is worth noticing that the prob-
lem occurred only in two cases, i.e. n = 32 and
n = 100. The sufficiently large size of mini-batches
solves this problem.

The accuracies obtained by the CNN, in the
case of n = 32, are presented in Tables 1 and 2
for training and test data, respectively. The Tables
include the mean accuracy over the whole train-
ing process, the maximal accuracy obtained during
training and the final accuracy obtained after pro-
cessing the last mini-batch. One can see that very
good results of the LB and the NLB methods ob-
tained for the training data and weak performance
for the test set confirm the need for modification of
these techniques.

Figure 4. Loss function computed on the test data
for various sizes of mini-batches: a) n = 32, b)

n = 100, c) n = 1000.

Table 1. The mean, maximal and final accuracies
obtained by various algorithms on the training

mini-batches.

Algorithm Mean Maximal Final
MB 0.7599 1.0 0.9375

SMB 0.7608 1.0 0.8125
OWC 0.7559 1.0 1.0

LB 0.89154 1.0 1.0
NLB 0.89205 1.0 1.0

ON TRAINING DEEP NEURAL NETWORKS USING . . .

Table 2. The mean, maximal and final accuracies
obtained by various algorithms on the test sets.

Algorithm Mean Maximal Final
MB 0.76779 0.88040 0.87949

SMB 0.76855 0.88179 0.88169
OWC 0.77530 0.86720 0.86690

LB 0.59989 0.72610 0.59100
NLB 0.66487 0.71899 0.69470

4.2 Analysis of BBTADD algorithm

The simulations presented in the previous Sec-
tion demonstrate the need for modification of the
BBAT LB and NLB algorithms. Now, the per-
formance of the BBTADD algorithm, described in
Section 3.2, will be demonstrated and discussed. To
highlight the advantages of the proposed method its
performance is compared with the NB approach.
In the conducted experiments, the parameters of
CUSUM drift detector are set to α = 0.00001 and
λC = 0.002. Their low values are dictated by small
differences between subsequent loss function val-
ues on the validation set. The size of mini-batches
is set to n = 32, as it was the worst scenario for the
LB and the NLB approaches in Section 4.1.

The values of loss function computed on train-
ing mini-batches and testing data are presented in
Figs 5 and 6, respectively. One can see that each of
the considered algorithms behave unstable on the
training data, which is caused by the small size of
the batch. At the beginning of training, the vari-
ance of loss function values of the LB and the NLB
methods is smaller than in the case of the MB ap-
proach. However, due to the reinitialization of the
pod values their convergence rate was lowered.

Figure 5. the loss function computed on the
training mini-batches for n = 32

Results presented in Figure 6 are as expected.
The value of the loss function for the LB and the
NLB methods decreases on the test dataset faster
than in the case of the MB approach.

Figure 6. The loss function computed on test data
for n = 32

After processing 18750 mini-batches the drift
has been indicated 1376 and 1334 times for LB
and NLB, respectively. Better adjustment of the
drift detector parameters can improve the stability
of these methods on the training mini-batches.

The accuracies on training and testing data, pre-
sented in Tables 3 and 4, respectively, confirm the
effectiveness of the proposed methods. Comparing
the results on the test set, presented in Tables 2 and
4, the usability of the drift detector application is
confirmed.

Table 3. The mean, maximal and final accuracies
obtained by the BBATDD MB/LB/NLB methods

on the training mini-batches.

Algorithm Mean Maximal Final
MB 0.74494 1.0 0.90625
LB 0.68139 1.0 0.9375

NLB 0.696 1.0 0.53125

Table 4. The mean, maximal and final accuracies
obtained by the BBATDD MB/LB/NLB methods

on the test sets.

Algorithm Mean Maximal Final
MB 0.75194 0.8834 0.88289
LB 0.78996 0.9245 0.9196

NLB 0.78812 0.9193 0.9182Figure 5: the loss function computed on the training
mini-batches for n = 32

the BBTADD algorithm, described in section 3.2,
will be demonstrated and discussed. To highlight the
advantages of the proposed method its performance
is compared with the NB approach. In the conducted
experiments, the parameters of CUSUM drift detec-
tor are set to α = 0.00001 and λC = 0.002. Their
low values are dictated by small differences between
subsequent loss function values on the validation set.
The size of mini-batches is set to n= 32, as it was the
worst scenario for the LB and the NLB approaches
in section 4.1.

The values of loss function computed on training
mini-batches and testing data are presented in Figs
5 and 6, respectively. One can see that each of the
considered algorithms behave unstable on the train-
ing data, which is caused by the small size of the
batch. At the beginning of training, the variance of
loss function values of the LB and the NLB meth-
ods is smaller than in the case of the MB approach.
However, due to the reinitialization of the pod values
their convergence rate was lowered.

Results presented in Fig. 6 are as expected. The
value of the loss function for the LB and the NLB
methods decreases on the test dataset faster than in
the case of the MB approach.

Figure 6: The loss function computed on test data for
n = 32

Table 3: The mean, maximal and final accuracies
obtained by the BBATDD MB/LB/NLB methods on
the training mini-batches.

Algorithm Mean Maximal Final
MB 0.74494 1.0 0.90625
LB 0.68139 1.0 0.9375

NLB 0.696 1.0 0.53125

After processing 18750 mini-batches the drift has
been indicated 1376 and 1334 times for LB and
NLB, respectively. Better adjustment of the drift de-
tector parameters can improve the stability of these
methods on the training mini-batches.

The accuracies on training and testing data, pre-
sented in Tab. 3 and 4, respectively, confirm the ef-
fectiveness of the proposed methods. Comparing the
results on the test set, presented in Tab. 2 and 4,
the usability of the drift detector application is con-
firmed.

11

Figure 5: the loss function computed on the training
mini-batches for n = 32

the BBTADD algorithm, described in section 3.2,
will be demonstrated and discussed. To highlight the
advantages of the proposed method its performance
is compared with the NB approach. In the conducted
experiments, the parameters of CUSUM drift detec-
tor are set to α = 0.00001 and λC = 0.002. Their
low values are dictated by small differences between
subsequent loss function values on the validation set.
The size of mini-batches is set to n= 32, as it was the
worst scenario for the LB and the NLB approaches
in section 4.1.

The values of loss function computed on training
mini-batches and testing data are presented in Figs
5 and 6, respectively. One can see that each of the
considered algorithms behave unstable on the train-
ing data, which is caused by the small size of the
batch. At the beginning of training, the variance of
loss function values of the LB and the NLB meth-
ods is smaller than in the case of the MB approach.
However, due to the reinitialization of the pod values
their convergence rate was lowered.

Results presented in Fig. 6 are as expected. The
value of the loss function for the LB and the NLB
methods decreases on the test dataset faster than in
the case of the MB approach.

Figure 6: The loss function computed on test data for
n = 32

Table 3: The mean, maximal and final accuracies
obtained by the BBATDD MB/LB/NLB methods on
the training mini-batches.

Algorithm Mean Maximal Final
MB 0.74494 1.0 0.90625
LB 0.68139 1.0 0.9375

NLB 0.696 1.0 0.53125

After processing 18750 mini-batches the drift has
been indicated 1376 and 1334 times for LB and
NLB, respectively. Better adjustment of the drift de-
tector parameters can improve the stability of these
methods on the training mini-batches.

The accuracies on training and testing data, pre-
sented in Tab. 3 and 4, respectively, confirm the ef-
fectiveness of the proposed methods. Comparing the
results on the test set, presented in Tab. 2 and 4,
the usability of the drift detector application is con-
firmed.

11



24 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

5 Conclusion

In this paper, we explored the possibility of im-
proving methods for learning deep neural networks
by applying techniques commonly used in the data
streams analysis. Replacing epoch-based learning
by randomly creating subsequent mini-batches al-
lowed the neural network training to be more effi-
cient. The idea taken from the boosting algorithm
resulted in a faster decrease of the loss function
values. However, it has turned out that the pro-
posed techniques may result in drawing the same
elements into the mini-batches. The application of
the drift detector helped to eliminate this problem
effectively.

The conducted experiment demonstrated that
the proposed approach opens up a number of re-
search threads. Finding other strategies for deter-
mining pod values can significantly improve learn-
ing. The application of a dedicated drift detector
can allow the system to better react to changes in the
trained model. Moreover, the application of the pro-
posed techniques to other convolutional neural net-
work architectures, like VGG Net or DenseNet, or
other structures, like restricted Boltzman Machines
or recurrent neural network, would be an interesting
task.

Acknowledgments

This work was supported by the Pol-
ish National Science Centre under grant no.
2017/27/B/ST6/02852.

References
[1] Abdulsalam, H., Martin, P., and Skillicorn, D. S.;

Streaming random forests. In 11th International
Database Engineering and Applications Symposium
(IDEAS 2007), pp. 225–232.

[2] Abdulsalam, H., Skillicorn, D. B., and Martin, P.;
Classifying evolving data streams using dynamic
streaming random forests. In International Confer-
ence on Database and Expert Systems Applications
(2008), Springer, pp. 643–651.

[3] Baena-Garcia, M., del Campo-Avila, J., Fidalgo,
R., Bifet, A., Gavalda, R., and Morales-Bueno,
R.; Early drift detection method. In Fourth Inter-
national Workshop on Knowledge Discovery from
Data Streams (2006).

[4] Bengio, Y.; Learning deep architectures for AI.
Foundations and Trends in Machine Learning 2, 1
(2009), 1–127.

[5] Bengio, Y., Lamblin, P., Popovici, D., and
Larochelle, H.; Greedy layer-wise training of deep
networks. In Proceedings of the 19th International
Conference on Neural Information Processing Sys-
tems (Cambridge, MA, USA, 2006), NIPS’06, MIT
Press, pp. 153–160.

[6] Bifet, A., and Gavaldà, R. Adaptive learning from
evolving data streams. In International Sympo-
sium on Intelligent Data Analysis (2009), Springer,
pp. 249–260.

[7] Bodyanskiy, Y., Vynokurova, O., Pliss, I., Setlak,
G., and Mulesa, P.; Fast learning algorithm for deep
evolving gmdh-svm neural network in data stream
mining tasks. In 2016 IEEE First International Con-
ference on Data Stream Mining Processing (DSMP)
(Aug 2016), pp. 257–262.

[8] Bologna, G., and Hayashi, Y.; Characterization of
symbolic rules embedded in deep dimlp networks: a
challenge to transparency of deep learning. Journal
of Artificial Intelligence and Soft Computing Re-
search 7, 4 (2017), 265–286.

[9] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y.
Empirical evaluation of gated recurrent neural net-
works on sequence modeling. CoRR abs/1412.3555
(2014).

[10] deBarros, R. S. M., Hidalgo, J. I. G., and
de Lima Cabral, D. R.; Wilcoxon rank sum test drift
detector. Neurocomputing 275 (2018), 1954–1963.

[11] Demsar, J., and Bosnic, Z.; Detecting concept drift
in data streams using model explanation. Expert
Systems with Applications 92 (2018), 546–559.

[12] Deng, L., Hinton, G., and Kingsbury, B.; New
types of deep neural network learning for speech
recognition and related applications: An overview.
In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing (2013), IEEE,
pp. 8599–8603.

[13] Ditzler, G., Roveri, M., Alippi, C., and Polikar,
R.; Learning in nonstationary environments: A sur-
vey. IEEE Computational Intelligence Magazine 10,
4 (2015), 12–25.

[14] Domingos, P., and Hulten, G.; Mining high-speed
data streams. In Proc. 6th ACM SIGKDD Internat.
Conf. on Knowledge Discovery and Data Mining
(2000), pp. 71–80.

[15] Gama, J., Medas, P., Castillo, G., and Rodrigues,
P.; Learning with drift detection. In Brazilian Sym-
posium on Artificial Intelligence (2004), Springer,
pp. 286–295.



25Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

5 Conclusion

In this paper, we explored the possibility of im-
proving methods for learning deep neural networks
by applying techniques commonly used in the data
streams analysis. Replacing epoch-based learning
by randomly creating subsequent mini-batches al-
lowed the neural network training to be more effi-
cient. The idea taken from the boosting algorithm
resulted in a faster decrease of the loss function
values. However, it has turned out that the pro-
posed techniques may result in drawing the same
elements into the mini-batches. The application of
the drift detector helped to eliminate this problem
effectively.

The conducted experiment demonstrated that
the proposed approach opens up a number of re-
search threads. Finding other strategies for deter-
mining pod values can significantly improve learn-
ing. The application of a dedicated drift detector
can allow the system to better react to changes in the
trained model. Moreover, the application of the pro-
posed techniques to other convolutional neural net-
work architectures, like VGG Net or DenseNet, or
other structures, like restricted Boltzman Machines
or recurrent neural network, would be an interesting
task.

Acknowledgments

This work was supported by the Pol-
ish National Science Centre under grant no.
2017/27/B/ST6/02852.

References
[1] Abdulsalam, H., Martin, P., and Skillicorn, D. S.;

Streaming random forests. In 11th International
Database Engineering and Applications Symposium
(IDEAS 2007), pp. 225–232.

[2] Abdulsalam, H., Skillicorn, D. B., and Martin, P.;
Classifying evolving data streams using dynamic
streaming random forests. In International Confer-
ence on Database and Expert Systems Applications
(2008), Springer, pp. 643–651.

[3] Baena-Garcia, M., del Campo-Avila, J., Fidalgo,
R., Bifet, A., Gavalda, R., and Morales-Bueno,
R.; Early drift detection method. In Fourth Inter-
national Workshop on Knowledge Discovery from
Data Streams (2006).

[4] Bengio, Y.; Learning deep architectures for AI.
Foundations and Trends in Machine Learning 2, 1
(2009), 1–127.

[5] Bengio, Y., Lamblin, P., Popovici, D., and
Larochelle, H.; Greedy layer-wise training of deep
networks. In Proceedings of the 19th International
Conference on Neural Information Processing Sys-
tems (Cambridge, MA, USA, 2006), NIPS’06, MIT
Press, pp. 153–160.

[6] Bifet, A., and Gavaldà, R. Adaptive learning from
evolving data streams. In International Sympo-
sium on Intelligent Data Analysis (2009), Springer,
pp. 249–260.

[7] Bodyanskiy, Y., Vynokurova, O., Pliss, I., Setlak,
G., and Mulesa, P.; Fast learning algorithm for deep
evolving gmdh-svm neural network in data stream
mining tasks. In 2016 IEEE First International Con-
ference on Data Stream Mining Processing (DSMP)
(Aug 2016), pp. 257–262.

[8] Bologna, G., and Hayashi, Y.; Characterization of
symbolic rules embedded in deep dimlp networks: a
challenge to transparency of deep learning. Journal
of Artificial Intelligence and Soft Computing Re-
search 7, 4 (2017), 265–286.

[9] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y.
Empirical evaluation of gated recurrent neural net-
works on sequence modeling. CoRR abs/1412.3555
(2014).

[10] deBarros, R. S. M., Hidalgo, J. I. G., and
de Lima Cabral, D. R.; Wilcoxon rank sum test drift
detector. Neurocomputing 275 (2018), 1954–1963.

[11] Demsar, J., and Bosnic, Z.; Detecting concept drift
in data streams using model explanation. Expert
Systems with Applications 92 (2018), 546–559.

[12] Deng, L., Hinton, G., and Kingsbury, B.; New
types of deep neural network learning for speech
recognition and related applications: An overview.
In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing (2013), IEEE,
pp. 8599–8603.

[13] Ditzler, G., Roveri, M., Alippi, C., and Polikar,
R.; Learning in nonstationary environments: A sur-
vey. IEEE Computational Intelligence Magazine 10,
4 (2015), 12–25.

[14] Domingos, P., and Hulten, G.; Mining high-speed
data streams. In Proc. 6th ACM SIGKDD Internat.
Conf. on Knowledge Discovery and Data Mining
(2000), pp. 71–80.

[15] Gama, J., Medas, P., Castillo, G., and Rodrigues,
P.; Learning with drift detection. In Brazilian Sym-
posium on Artificial Intelligence (2004), Springer,
pp. 286–295.

ON TRAINING DEEP NEURAL NETWORKS USING . . .

[16] Gers, F. A., and Schmidhuber, J.; Recurrent
nets that time and count. In Proceedings of the
IEEE-INNS-ENNS International Joint Conference
on Neural Networks. IJCNN 2000. Neural Comput-
ing: New Challenges and Perspectives for the New
Millennium (July 2000), vol. 3, pp. 189–194 vol.3.

[17] Gomes, H. M., Barddal, J. P., Enembreck, F.,
and Bifet, A.; A survey on ensemble learning for
data stream classification. ACM Computing Surveys
(CSUR) 50, 2 (2017), 23.

[18] Gomes, H. M., Bifet, A., Read, J., Barddal, J. P.,
Enembreck, F., Pfharinger, B., Holmes, G., and Ab-
dessalem, T.; Adaptive random forests for evolving
data stream classification. Machine Learning 106, 9-
10 (2017), 1469–1495.

[19] Goodfellow, I., Bengio, Y., and Courville, A.; Deep
Learning. MIT Press, 2016.

[20] He, K., Zhang, X., Ren, S., and Sun, J.; Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2016), pp. 770–778.

[21] Hinton, G. E., Osindero, S., and Teh, Y.-W.; A fast
learning algorithm for deep belief nets. Journal of
Neural Computation 18, 7 (July 2006), 1527–1554.

[22] Hinton, G. E., Sejnowski, T. J., and Ackley,
D. H.; Boltzmann machines: Constraint satisfac-
tion networks that learn. Tech. Rep. CMU-CS-84-
119, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, 1984.

[23] Hochreiter, S., Bengio, Y., Frasconi, P., and
Schmidhuber, J.; Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, 2001.

[24] Hou, Y., and Holder, L. B.; On graph mining with
deep learning: Introducing model r for link weight
prediction. Journal of Artificial Intelligence and Soft
Computing Research 9, 1 (2019), 21–40.

[25] Huang, G., Liu, Z., v. d. Maaten, L., and Wein-
berger, K. Q.; Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (July 2017),
pp. 2261–2269.

[26] II, A. G. O., Giles, C. L., and Reitter, D.; Online
semi-supervised learning with deep hybrid boltz-
mann machines and denoising autoencoders. CoRR
abs/1511.06964 (2015).

[27] Jaworski, M., Duda, P., and Rutkowski, L.; On ap-
plying the Restricted Boltzmann Machine to active
concept drift detection. In Proceedings of the 2017
IEEE Symposium Series on Computational Intelli-
gence (Honolulu, USA, 2017), pp. 3512–3519.

[28] Jaworski, M., Duda, P., and Rutkowski, L.; Con-
cept drift detection in streams of labelled data us-
ing the Restricted Boltzmann Machine. In 2018 In-
ternational Joint Conference on Neural Networks
(IJCNN) (2018), pp. 1–7.

[29] Jaworski, M., Rutkowski, L., Duda, P., and
Cader, A.; Resource-aware data stream mining
using the Restricted Boltzmann Machine. In Ar-
tificial Intelligence and Soft Computing (Cham,
2019), L. Rutkowski, R. Scherer, M. Korytkowski,
W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada,
Eds., Springer International Publishing, pp. 15–24.

[30] Kingma, D. P., and Welling, M.; Stochastic gradi-
ent vb and the variational auto-encoder. In Second
International Conference on Learning Representa-
tions, ICLR (2014), vol. 19.

[31] Krawczyk, B., Minku, L. L., Gama, J., Ste-
fanowski, J., and Wozniak, M.; Ensemble learning
for data stream analysis: A survey. Information Fu-
sion 37 (2017), 132–156.

[32] Krizhevsky, A., Sutskever, I., and Hinton, G. E.;
Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Asso-
ciates, Inc., 2012, pp. 1097–1105.

[33] LeCun, Y., Bengio, Y., and Hinton, G.; Deep learn-
ing. Nature 521, 7553 (2015), 436.

[34] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.;
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE 86, 11 (Nov 1998),
2278–2324.

[35] LeCun, Y., and Cortes, C.; Mnist handwritten digit
database (2010); http://yann.lecun.com/exdb/mnist/

[36] Mamoshina, P., Vieira, A., Putin, E., and Zha-
voronkov, A.; Applications of deep learning in
biomedicine; Molecular pharmaceutics 13, 5 (2016),
1445–1454

[37] Mello, R. F., Vaz, Y., H.Grossi, C., and Bifet,
A.; On learning guarantees to unsupervised concept
drift detection on data streams; Expert Systems with
Applications 117 (2019), 90–102

[38] Page, E. S.,Continuous inspection schemes;
Biometrika 41, 1/2 (1954), 100–115

[39] Read, J., Perez-Cruz, F., and Bifet, A., Deep learn-
ing in partially-labeled data streams; In Proceedings
of the 30th Annual ACM Symposium on Applied
Computing (New York, NY, USA, 2015), SAC ’15,
ACM, pp. 954–959

[40] Simonyan, Karen; Zisserman, A., Very deep con-
volutional networks for large-scale image recogni-
tion; eprint arXiv:1409.1556 (2014)



26 Piotr Duda, Maciej Jaworski, Andrzej Cader, Lipo Wang

[41] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P.,
Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A., Going deeper with convolu-
tions, In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (June 2015),
pp. 1–9

[42] Vincent, P., Larochelle, H., Bengio, Y., and Man-

zagol, P.-A., Extracting and composing robust fea-
tures with denoising autoencoders; In Proceedings
of the 25th International Conference on Machine
Learning (New York, NY, USA, 2008), ICML ’08,
ACM, pp. 1096–1103

[43] Zeiler, M. D., Adadelta: an adaptive learning rate
method; arXiv preprint arXiv:1212.5701 (2012)

Piotr Duda received the M.Sc. degree 
in mathematics from the Department 
of Mathematics, Physics, and Chem-
istry, University of Silesia, Katowice, 
Poland, in 2009. He obtained the Ph.D. 
degree and Sc.D. in computer science 
with the Institute of Computational In-
telligence, Częstochowa University of 
Technology, Częstochowa, Poland in 

2015 and 2019, respectively.  His current research interests 
include deep learning and data stream mining.

Maciej Jaworski received the M.Sc. 
(Hons.) degree in theoretical physics 
from Jagiellonian University, Kraków, 
Poland, in 2009, and the M.Sc. degree 
in applied computer science from the 
AGH University of Science and Tech-
nology, Cracow, in 2011. He obtained 
the Ph.D. degree and Sc.D. degree in 
computer science with the Institute 

of Computational Intelligence, Częstochowa University of 
Technology, Częstochowa in 2015 and 2019, respectively. His 
current research interests include computational intelligence, 
data stream mining and neural networks.

Andrzej Cader is a professor at Uni-
versity of Social Science in Łódź, Po-
land. He received the Ph.D. degree in 
biocybernetics and biomedical engi-
neering  from the Medical University 
in Łódź, Poland. His research interests 
include intelligent systems science 
based on several architectures such as 
neural networks and complex systems. 

He is also currently engaged in time series analysis and chaos 
theory.

Lipo Wang received the Bachelor de-
gree from National University of De-
fense Technology (China) and Ph.D. 
from Louisiana State University 
(USA). His research interest is arti-
ficial intelligence/machine learning 
with applications to communications, 
image/video processing, biomedical 
engineering, and data mining. He has 

authored 320 papers, of which 110 are in journals. He has au-
thored 2 monographs and edited 20 books. His work has been 
cited 7,800 times in Google Scholar. He was/will be keynote 
speaker for 40 international conferences. He was President 
of the Asia-Pacific Neural Network Assembly (APNNA) and 
received the APNNA Excellent Service Award.


