PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Symmetric neutral-atmosphere mapping functions: a review of the state-of-the-art

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to review of six recent symmetric mapping functions. The mapping function can be largely used for GPS meteorological measurements, InSAR atmospheric corrections and precise measurements of very long baseline interferometry (VLBI). These spacebased techniques use radio signal that propagate through the Earth's atmosphere. The electrically-neutral region, predominantly the troposphere, affects the speed and direction of travel of radio waves leading to existence of excess path. The mapping function models the elevation angle dependence of the delay. Within the past decade, significant improvements have been achieved in order to use of Numerical Weather Models (NWM) for geodetic positioning. Ray-tracing algorithms have been performed through refractivity shells retrieved from NWMs in order to relate zenith delays to slant delays. Therefore, there seems to be a real need for deep review of recent developments in the mapping function domain. This paper proposes a comprehensive review of the symmetric mapping functions state of the art, their spatio-temporal variations and used NWM and generic models. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick-VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are reviewed in this paper.
Rocznik
Strony
159--170
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran
autor
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran
Bibliografia
  • AGU, December 1995: Water vapor in the climate system special report: http://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html.
  • Bean, B.R. and E.J.Dutton, 1996: Radio Meteorology. National Burea of Standards Monograph 92, U.S Goverment Printing Office: Washington, D.C.
  • Boehm J, Heinkelmann R, Schuh H, 2007: Short note: a global model of pressure and temperature for geodetic applications. J Geodesy, Vol.81, No.10, pp. 679-683. doi:10.1007/s00190-007-0135-3.
  • Boehm, J., A. E. Niell, P. Tregoning, and H. Schuh, 2006a: Global Mapping Function(GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, Vol. 33, No. L07304, doi:10.1029/2005GL025546.
  • Boehm, J., B. Werl, and H. Schuh, 2006b: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research, Vol. 111, No. B02406.
  • Davis, J.L., T.A.Herring, I.I.Shapiro, A.E.E. Rogers and G.Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimated of baseline length. Radio science, Vol. 20, No.6, pp. 1593-1607.
  • Emardson, T. R., G. Elgered, and J. M. Johansson, 1998: Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers. J. Geophys. Res., Vol.103, pp. 1807-1820.
  • K. Lagler, M. Schindelegger,J. Böhm, H. Krásná,and T.Nilsson, 2013: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophysical Research Letters, Vol. 40, pp. 1069-1073, doi:10.1002/grl.50288.
  • Marcelo C. Santos, Matthew McAdam, and Johannes Boehm, 2012: Implementation Status of the UNB-VMF1, EGU General Assembly 2012 Vienna, Austria, pp. 22-27.
  • Marini, J. W. 1972: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, Vol. 7, No. 2, pp. 223-231, doi:10.1029/RS007i002p00223.
  • Mendes, V.B. 1999: Modeling The Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques. Ph.D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 199, University of New Brunswick, Canada.
  • Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, Vol. 101, No. B2, pp. 3227-3246.
  • Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham, 2001: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., Vol.18, pp. 830-850.
  • Nievinski, F. G., 2009: Ray-tracing Options to Mitigate the Neutral Atmosphere Delay in GPS. M.Sc.E. thesis, University of New Brunswick, Dept. of Geodesy and Geomatics Engineering, Fredericton, N.B., Canada, May, 232 pp., Technical Report 262.
  • Owens, J.C., 1967: Optical refractive index of air: Dependence on pressure, temperature and composition. Applied Optics, Vol.6, No.1, pp. 51-59.
  • Parish, T. R., and D. H. Bromwich, 1997: On the forcing of seasonal changes in surface pressure over Antarctica. Journal of Geophysical Research, 102(D12), pp. 13785-13792, doi:10.1029/96JD02959.
  • Rüeger, J.M, 2002: Refractive index formula for radio waves. FiG XXII International Congres, International Federation of Surveyors(FIG), Washington,D.C, April 19-26.
  • Saastamoinen, J., 1973: Contributions to the theory of atmospheric refraction. In three parts. Bulletin Geodesique, No.105, pp. 279-298; No.106, pp. 383-397; No.107, pp. 13-34.
  • Website1: http://ggosatm.hg.tuwien.ac.at
  • Website2: http://unb-vmf1.gge.unb.ca/pub/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-842540d8-9eb3-404a-8c5c-96063248e198
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.