PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of groundwater vulnerability using the DRASTIC model: A case study of Quaternary catchment A21C, Limpopo River Basin, South Africa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater is a vital resource for domestic, agricultural, industrial activities and ecosystem services. Despite its multiple purposes, the resource is under significant threat owing to increasing contamination from anthropogenic activities and climate change. Hence, in order to ensure the reliability and sustainable use of groundwater for the present and future generations, effective management of groundwater (quality and quantity) is highly important. This can be achieved by identifying areas more vulnerable to contamination and implementing protective measures. The present study aims at assessing the vulnerability of groundwater using GIS-based DRASTIC index in the Quaternary catchment (A21C) within Limpopo River Basin. The vulnerability index varied from 87 to 207. About 53.6% (408 km2) of the catchment area also exhibited high risk of groundwater contamination mostly in central, north-eastern and western part of the sub-catchment. The medium and low vulnerability classes cover only 18.1% (137.5 km2) and 21.7% (165.1 km2) of the study area, respectively. The shallow groundwater at the Doornfontein Campus belongs to very high vulnerability area. The sensitivity analysis indicates that depth to water level, recharge, aquifer media, soil and topography are the important contributors to vulnerability assessment. The correlation analysis performed to validate the final vulnerability map shows a moderate positive correlation, indicating the model’s applicability to the urbanised environment. The study indicates an area that is highly vulnerable to pollution, and hence protective measures are necessary for sustainable management of the groundwater resource in the study area. The result of this study can also be further improved and verified by using other vulnerability assessment models.
Wydawca
Rocznik
Tom
Strony
35--46
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
  • University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
Bibliografia
  • ABIYE T.A. 2011. Provenance of groundwater in the crystalline aquifer of Johannesburg area, South Africa. International Journal of Physical Sciences. Vol. 6. Iss. 4 p. 98–111. DOI 10.5897/ IJPS10.119.
  • ABIYE T.A., MENGISTU H., DEMLIE M.B. 2011. Groundwater resource in the crystalline rocks of the Johannesburg area, South Africa. Journal of Water Resources and Protection. Vol. 3 p. 199–212. DOI 10.4236/jwarp.2011.34026.
  • AKBAR T.A., AKBAR R.A. 2013. Pesticide health risk mapping and sensitivity analysis of parameters in groundwater vulnerability assessment. Clean Soil Air Water. Vol. 41. Iss. 11 p. 1073–1079. DOI 10.1002/clen.201200232.
  • ALLER L., BENNETT T., LEHR J.H., PETTY R.J., HACKETT G. 1987. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. U.S. Environmental Protection Agency. Washington. D.C., EPA/600/2-85/018. pp. 163.
  • AYDI A. 2018. Evaluation of groundwater vulnerability to pollution using a GIS-based multicriteria decision analysis. Groundwater for Sustainable Development. Vol. 7 p. 204–211. DOI 10.1016/j.gsd.2018.06.003.
  • BABIKER I.S., MOHAMED M.A., HIYAMA T., KATO K. 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of The Total Environment. Vol. 345. Iss. 1–3 p. 127–40. DOI 10.1016/j.scitotenv.2004.11.005.
  • BARNARD H.C. 1999. Hydrogeological map of Johannesburg 2526. 1:500.000. Department of Water Affairs and Forestry, Pretoria, Johannesburg, RSA.
  • BOUFEKANE A., SAIGHI O. 2018. Application of groundwater vulnerability overlay and index methods to the Jijel Plain Area (Algeria). Ground Water. Vol. 56. Iss. 1 p. 143–156. DOI 10.1111/gwat.12582.
  • BUTLER A.P.2010. Groundwater vulnerability and protection. In: Groundwater modelling in arid and semiarid areas. Eds. H.S. Wheater, S.A. Mathias, X. Li. International Hydrology Series. Cambridge. Cambridge University Press p. 75–86. DOI 10.1017/CBO9780511760280.007.
  • CHEN J., WU H., QIAN H., LI X. 2018. Challenges and prospects of sustainable groundwater management in an agricultural plain along the Silk Road Economic Belt, north-west China. International Journal of Water Resources Development. Vol. 34. Iss. 3 p. 354–368. DOI 10.1080/07900627.2016.1238348.
  • DE BEER J.H. 1986. Geology of Johannesburg, Republic of South Africa. Environmental and Engineering Geoscience. Vol. 23. Iss. 2 p. 101–137. DOI 10.2113/gseegeosci.xxiii.2.101.
  • DEVIC G., DJORDJEVIC D., SAKAN S. 2014. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment. Vol. 468-469 p. 933–941. DOI 10.1016/j.scitotenv.2013.09.011.
  • DOMENICO P.A., SCHWARTZ F.W. 1997. Physical and chemical hydrogeology. 2nd ed. Wiley New York. ISBN 978-0-471-59762-9 pp. 528.
  • DWAF 2006. Groundwater Resource Assessment II: Task 3aE Recharge, final report. Department of Water Affairs and Forestry. Pretoria, South Africa pp. 129.
  • DWS 2019. National Integrated Water Information System (NIWIS) [on-line]. Department of Water and Sanitation, Republic of South Africa. [Access 18.12.2019]. Available at: http://www.dwa.gov.za/niwis2/GroundWaterStatus.
  • GUPTA N. 2014. Groundwater vulnerability assessment using DRASTIC method in Jabalpur District of Madhya Pradesh. International Journal of Recent Technology and Engineering. Vol. 3. Iss. 3 p. 36–43.
  • HAMUTOKO J.T., WANKE H., VOIGT H.J. 2016. Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia. Physics and Chemistry of the Earth. Parts A/B/C. Vol. 93 p. 46–54. DOI 10.1016/j.pce.2015.12.007.
  • HASAN M., ISLAM M.A., AZIZ HASAN M., ALAM M.J., PEAS M.H. 2019. Groundwater vulnerability assessment in Savar upazila of Dhaka district, Bangladesh – A GIS-based DRASTIC modeling. Groundwater for Sustainable Development. Vol. 9, 100220. DOI 10.1016/j.gsd.2019.100220.
  • HOWARD K.W.F. 2014. Sustainable cities and the groundwater governance challenge. Environmental Earth Sciences. Vol. 73. Iss. 6 p. 2543–2554. DOI 10.1007/s12665-014-3370-y.
  • HUANG L., ZENG G., LIANG J., HUA S., YUAN Y., LI X., DONG H., LIU J., NIE S., LIU J. 2017. Combined impacts of land use and climate change in the modeling of future groundwater vulnerability. Journal of Hydrologic Engineering. Vol. 22. Iss. 7, 05017007. DOI 10.1061/(ASCE)HE.1943-5584.0001493.
  • HUIZENGA J.M., HARMSE J.T. 2005. Geological and anthropogenic influences on the inorganic water chemistry of the Jukskei River, Gauteng, South Africa. South African Journal of Geology. Vol. 108. Iss. 3 p. 439–447. DOI 10.2113/108.3.439.
  • JAHAN C.S., RAHAMAN M.F., AREFIN R., ALI M.S., MAZUMDER Q.H. 2018. Delineation of groundwater potential zones of Atrai–Sib River basin in north-west Bangladesh using remote sensing and GIS techniques. Sustainable Water Resources Management. Vol. 5. Iss. 3 p. 689–702. DOI 10.1007/s40899-018-0240-x.
  • JANG W.S., ENGEL B., HARBOR J., THELLER L. 2017. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water. Vol. 9. Iss. 10 p. 792–792. DOI 10.3390/w9100792.
  • KADAOUI M., BOUALI A., ARABI M. 2019. Assessment of physico-chemical and bacteriological groundwater quality in irrigated Triffa Plain, North-East of Morocco. Journal of Water and Land Development. No. 42 (VII–IX) p. 100–109. DOI 10.2478/jwld-2019-0050.
  • KHOSRAVI K., SARTAJ M., TSAI F.T., SINGH V.P., KAZAKIS N., ME-LESSE A.M., PRAKASH I., TIEN BUI D., PHAM B.T. 2018. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of The Total Environment. Vol. 642 p. 1032–1049. DOI 10.1016/j.scitotenv.2018.06.130.
  • KIHUMBA A.M., VANCLOOSTER M., LONGO J.N. 2017. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. Journal of African Earth Sciences. Vol. 126 p. 13–22. DOI 10.1016/j.jafrearsci.2016. 11.025.
  • KOSITCIN N., MCNAUGHTON N.J., GRIFFIN B.J., FLETCHER I.R., GROVES D.I., RASMUSSEN B. 2003. Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta. Vol. 67. Iss. 4 p. 709–731. DOI 10.1016/ S0016-7037(02)01169-9.
  • KOZŁOWSKI M., SOJKA M. 2019. Applying a modified DRASTIC model to assess groundwater vulnerability to pollution: A case study in Central Poland. Polish Journal of Environmental Studies. Vol. 28. Iss. 3 p. 1223–1231. DOI 10.15244/pjoes/84772.
  • KUMAR A., KRISHNA A.P. 2019. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International. Vol. 35. Iss. 11 p. 1149–1178. DOI 10.1080/10106049.2018.1557259.
  • LODWICK W.A., MONSON W., SVOBODA L. 1990. Attribute error and sensitivity analysis of map operations in geographical in-formation systems: Suitability analysis. International Journal of Geographical Information Systems. Vol. 4. Iss. 4 p. 413–428. DOI 10.1080/02693799008941556.
  • LYNCH S.D., REYNDERS A.G., SCHULZE R.E. 1994. Preparing input data for a national-scale groundwater vulnerability map of southern Africa. Water SA. Vol. 20. Iss. 3 p. 239–246.
  • LYNCH S.D., REYNDERS A.G., SCHULZE, R.E. 1997. A DRASTIC approach to groundwater vulnerability in South Africa. South African Journal of Science (South Africa). Vol. 93. Iss. 2 p. 59–60.
  • MACHIWAL D., CLOUTIER V., GÜLER C., KAZAKIS N. 2018a. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences. Vol. 77. Iss. 19, 681. DOI 10.1007/s12665-018-7872-x.
  • MACHIWAL D., JHA M.K., SINGH V.P., MOHAN C. 2018b. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews. Vol. 185 p. 901–927. DOI 10.1016/j.earscirev.2018.08.009.
  • MALHERBE H., GEBEL M., PAULEIT S., LORZ C. 2018. Land use pollution potential of water sources along the southern coast of South Africa. Change and Adaptation in Socio-Ecological Systems. Vol. 4. Iss. 1 p. 7–20. DOI 10.1515/cass-2018-0002.
  • MCCARTHY T., RUBIDGE B. 2005. The story of earth & life: A South African perspective on a 4,6-billion-year journey. Cape Town. Struik Publishers. ISBN 978-1770071483 pp. 333.
  • MUHAMMAD A.M., ZHONGHUA T., DAWOOD A.S., EARL B. 2015. Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Internacional. Vol. 54. Iss. 1 p. 67–81. DOI 10.1016/ j.gi.2015.04. 003.
  • MUSEKIWA C., MAJOLA K. 2013. Groundwater vulnerability map for South Africa. South African Journal of Geomatics. Vol. 2. Iss. 2 p. 152–162.
  • NAPOLITANO P., FABBRI A.G. 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference, April 1996). IAHS Publication. No. 235 p. 559–566.
  • National Research Council 1993. Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty. Washington, DC. The National Academies Press. ISBN 978-0-309-04799-9 pp. 224. DOI 10.17226/2050.
  • NESHAT A., PRADHAN B., DADRAS M. 2014. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation and Recycling. Vol. 86 p. 74–86. DOI 10.1016/j.resconrec.2014.02.008.
  • OKE S.A., FOURIE F. 2017. Guidelines to groundwater vulnerability mapping for Sub-Saharan Africa. Groundwater for Sustainable Development. Vol. 5 p. 168–177. DOI 10.1016/j.gsd. 2017.06.007.
  • OUEDRAOGO I., DEFOURNY P., VANCLOOSTER M. 2016. Mapping the groundwater vulnerability for pollution at the pan African scale. Science of The Total Environment. Vol. 544 p. 939–953. DOI 10.1016/j.scitotenv.2015.11.135.
  • RIBEIRO L., PINDO J.C., DOMINGUEZ-GRANDA L. 2017. Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method. Science of The Total Environment. Vol. 574 p. 1674–1683. DOI 10.1016/j.sci-totenv.2016.09.004.
  • SAAYMAN I., BEEKMAN H., ADAMS S., CAMPBELL R., CONRAD J., FEY M., JOVANOVIC N., THOMAS A., USHER B. 2007. Assessment of aquifer vulnerability in South Africa. Report to the Water Research Commission: WRC Report No. 1432/1/07. Pretoria, South Africa.
  • SAIDI S., BOURI S., BEN DHIA H. 2011. Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrological Sciences Journal. Vol. 56. Iss. 2 p. 288–304. DOI 10.1080/02626667.2011.552886.
  • SAKALA E., FOURIE F., GOMO M., COETZEE H. 2018. GIS-based groundwater vulnerability modelling: A case study of the Witbank, Ermelo and Highveld Coalfields in South Africa. Journal of African Earth Sciences. Vol. 137 p. 46–60. DOI 10.1016/ j.jafrearsci.2017.09.012.
  • SHRESTHA S., KAFLE R., PANDEY V.P. 2017. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of The Total Environment. Vol. 575 p. 779–790. DOI 10.1016/j.scitotenv.2016. 09.141.
  • SINGH A., SRIVASTAV S.K., KUMAR S., CHAKRAPANI G.J. 2015. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental Earth Sciences. Vol. 74. Iss. 7 p. 5475–5490. DOI 10.1007/s12665-015-4558-5.
  • SINGHAL B.B.S., GUPTA R.P. 2010. Applied hydrogeology of fractured rocks. 2nd ed. Springer Science and Business Media. ISBN 978-94-007-9019-3 pp. 408.
  • VU T.-D., NI C.-F., LI W.-C., TRUONG M.-H.J.W. 2019. Modified index-overlay method to assess spatial–temporal variations of groundwater vulnerability and groundwater contamination risk in areas with variable activities of agriculture developments. Water. Vol. 11. Iss. 12, 2492. DOI 10.3390/w11122492.
  • Water resources of South Africa, 2012 Study (WR2012) [online]. [Access 29.09.2019]. Available at: http://waterre-sourceswr2012.co.za
  • YOUNGER P.L. 2009. Groundwater in the environment: An introduction. London. John Wiley & Sons. ISBN 9781444309041 pp. 336.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8424dd05-db4a-4aa5-99ed-f274b14f63b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.