PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of evolutionary algorithms for the optimization of storm water drainage network for an urbanized area

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The studies pertaining to urban storm water drainage system have picked up importance lately in light of pluvial flooding. The flooding is mostly due to urban expansion, reduction in infiltration rate and environmental change. In order to minimize flooding, hydrologists are using conceptual rainfall–runoff models as a tool for predicting surface runoff and flood forecasting. Manual calibration is often a tedious process because of the involved subjectivity, which makes the automatic approach more preferable. In this study, three evolutionary algorithms (EAs), namely SFLA, GA and PSO, were used to calibrate SWMM parameters for the two study areas of the highly urbanized catchments of Delhi, India. The work incorporates auto-tuning of a widely used SWMM, via internal coupling of SWMM with all three EAs in MATLAB environment separately. Results were tested using statistical parameters, i.e., Nash–Sutcliffe efficiency (NSE), Percent Bias (PBIAS) and root-mean-square error–observations standard deviation ratio (RSR). GA results were in good agreement with the observed data in both the study area with NSE and PBIAS values lying between 0.60 and 0.91, and 1.29 and 7.41%, respectively. Also, RSR value was near zero, indicating reasonably good model performance. Subsequently, the model reasonably predicted the flooding hotspots that should be controlled to prevent any possible inundation of the surrounding areas. SFLA results were also promising, but better than PSO. Thus, the approach has demonstrated the potential use and combination of single-objective optimization algorithms and hydrodynamic models for assessing the risk in urban storm water drainage systems, providing valuable information for decision-makers.
Czasopismo
Rocznik
Strony
149--165
Opis fizyczny
Bibliogr. 90 poz.
Twórcy
autor
  • Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
  • Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
autor
  • Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Bibliografia
  • 1. Alghazi A, Selim SZ, Elazouni A (2012) Performance of shuffled frog-leaping algorithm in finance-based scheduling. J Comput Civ Eng ASCE 26:396–408. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000157
  • 2. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672
  • 3. AlRashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput 13:913–918. https://doi.org/10.1109/TEVC.2006.880326
  • 4. Anand J, Gosain AK, Khosa R (2018) Optimisation of multipurpose reservoir operation by coupling Soil and Water Assessment Tool (SWAT) and Genetic Algorithm for Optimal Operating Policy (Case Study: Ganga River Basin). Sustainability 10(5):1660. https://doi.org/10.3390/su10051660
  • 5. Arabi M, Govindaraju RS, Hantush MM (2006) Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour Res 42:1–14. https://doi.org/10.1029/2006WR004931
  • 6. Arsenault R, Poulin A, Côté P, Brissette F (2014) Comparison of stochastic optimization algorithms in hydrological model calibration. J Hydrol Eng 19:1374–1384. https://doi.org/10.1061/(ASCE)HE.1943-5584
  • 7. Back T, Fogel D, Michalewicz Z (2000) Handbook of evolutionary computation. IOP Publishing Ltd., Bristol
  • 8. Baltar AM, Fontane DG (2008) Use of multiobjective particle swarm optimization in water resources management. J Water Resour Plan Manag 134:257–265. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(257)
  • 9. Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann, San Francisco
  • 10. Barco J, Wong KM, Stenstrom MK (2008) Automatic calibration of the US EPA SWMM model for a large urban catchment. J Hydraul Eng 134(4):466–474
  • 11. Bayer P, Finkel M (2007) Optimization of concentration control by evolution strategies: formulation, application, and assessment of remedial solutions. Water Resour Res 43:1–19. https://doi.org/10.1029/2005WR004753
  • 12. Bekele EG, Nicklow JW (2005) Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resour Res 41:1–10. https://doi.org/10.1029/2005WR004090
  • 13. Blasone R-S, Madsen H, Rosbjerg D (2007) Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques. Nord Hydrol 38:451. https://doi.org/10.2166/nh.2007.024
  • 14. Burian SJ, McPherson TN, Brown MJ, Turin HJ (2000) Development of a stormwater model for the Ballona Creek watershed. Los Alamos Unclassified Rep. (LA-UR-00-1849) Los Alamos National Laboratory, Presented at 1st Ballona Wetlands Symp., Los Angeles, CA
  • 15. Cembrowicz RG (1994) Evolution strategies and genetic algorithms in water supply and waste water systems design. In: Blain WR et al (eds) Proceedings of water resources and distribution, Comp. Mechanics, Southampton, UK, pp 27–39
  • 16. Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol 329:363–367. https://doi.org/10.1016/j.jhydrol.2006.02.025
  • 17. Chen R-S, Pi L-C, Hsieh C-C (2005) Application of parameter optimization method for calibrating tank model. J Am Water Resour Assoc 41:389–402. https://doi.org/10.1111/j.1752-1688.2005.tb03743.x
  • 18. Choi KS, Ball JE (2002) Parameter estimation for urban runoff modelling. Urban Water 4(1):31–41
  • 19. Cooper VA, Nguyen VTV, Nicell JA (1997) Evaluation of global optimization methods for conceptual rainfall-runoff model calibration. Water Sci Technol 36:53–60. https://doi.org/10.1016/S0273-1223(97)00461-7
  • 20. Dandy GC, Simpson AR, Murphy LJ (1996) An Improved An improved genetic algorithm for pipe network optimization. Water Resour Res 32:449–458. https://doi.org/10.1002/wrcr.20175/abstract/PERMISSIONS
  • 21. de Castro LN, Von Zuben FJ (2002a) Learning and optimization using the clonal selection principle. IEEE Trans Evolut Comput 6(3):239–251
  • 22. de Castro LN, Von Zuben FJ (2002b) Automatic determination of radial basis functions: an immunity-based approach. Int J Neurol Syst 11(6):523–535
  • 23. De Vos NJ, Rientjes THM (2008) Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour Res 44:1–15. https://doi.org/10.1029/2007WR006734
  • 24. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
  • 25. Dorigo M, Maniezzo V, Colorni A (1996) The ant systems: optimization by a colony of cooperative agents. IEEE Trans Syst Man Cybern B 26:1–13
  • 26. Duan Q, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031
  • 27. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521. https://doi.org/10.1007/BF00939380
  • 28. Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284. https://doi.org/10.1016/0022-1694(94)90057-4
  • 29. Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129:210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
  • 30. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38:129–154. https://doi.org/10.1080/03052150500384759
  • 31. Fang T, Ball JE (2007) Evaluation of spatially variable control parameters in a complex catchment modelling system: a genetic algorithm application. J Hydroinform 9(3):163–173
  • 32. Fang L, Chen P, Shihua L (2007) Particle swarm optimization with simulated annealing for TSP. In: Proceeding WSEAS international conference on artificial intelligence, knowledge engineering and data bases, vol 6. Corfu Island, World Scientific and Engineering Academy and Society WSEAS, Greece, pp 206–210
  • 33. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York
  • 34. Franchini M, Galeati G, Berra S (1998) Global optimization techniques for the calibration of conceptual rainfall-runoff models. Hydrol Sci J 43:443–458. https://doi.org/10.1080/02626669809492137
  • 35. Gironás J, Niemann JD, Roesner LA, Rodriguez F, Andrieu H (2009) Evaluation of methods for representing urban terrain in storm-water modeling. J Hydrol Eng 15(1):1–14r
  • 36. Goldberg DE (1989) Genetic algorithms and Walsh functions: part I. A gentle introduction. Complex Syst 3:129–152
  • 37. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration model of hydrologic models: multiple and non-commensurable measures of information. Water Resour Res 34:751–763
  • 38. Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143
  • 39. Haddad OB, Hamedi F, Orouji H, Pazoki M, Loáiciga HA (2015) A re-parameterized and improved nonlinear Muskingum model for flood routing. Water Resour Manag 29(9):3419–3440
  • 40. Hardyanto W, Merkel B (2007) Introducing probability and uncertainty in groundwater modeling with FEMWATER-LHS. J Hydrol 332:206–213. https://doi.org/10.1016/j.jhydrol.2006.06.035
  • 41. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
  • 42. Houck CR, Joines JA, Kay MG (1996) Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems. Comput Oper Res 23(6):587–596
  • 43. Houck CR, Joines JA, Kay MG, Wilson JR (1997) Empirical investigation of the benefits of partial Lamarckianism. Evol Comput 5:31–60
  • 44. Huber WC, Dickinson RE (1992) Storm water management model user’s manual, version 4. Environmental Protection Agency, Georgia
  • 45. Ibrahim RA (2005) Liquid sloshing dynamics: theory and applications. Cambridge University Press, Cambridge
  • 46. Jewell TK, Nunno TJ, Adrian DD (1978) Methodology for calibrating stormwater models. J Environ Eng Div 104(3):485–501
  • 47. Joines J, Kay M (2002) Utilizing hybrid genetic algorithms. In: Sarker R, Mahamurdian M, Yao X (eds) Evolutionary Optimization. Kluwer, Norwell, MA
  • 48. Jung BS, Karney BW (2006) Hydraulic optimization of transient protection devices using GA and PSO approaches. J Water Resour Plan Manag 132:44–52. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:1(44)
  • 49. Karimi-Hosseini A, Bozorg Haddad O, Mariño MA (2011) Site selection of rain gauges using entropy methodologies. In: Proceedings of the Institution of Civil Engineers-Water Management, vol 164, no 7. Thomas Telford Ltd, pp 321–333
  • 50. Karpouzos DK, Delay F, Katsifarakis KL, De Marsily G (2001) A multipopulation genetic algorithm to solve the inverse problem in hydrogeology. Water Resour Res 37:2291–2302. https://doi.org/10.1029/2000WR900411
  • 51. Kennedy J, Eberhart R (1995) Particle swarm optimization. Neural networks, 1995. Proceedings. IEEE Int. Conf., vol 4, pp 1942–1948. https://doi.org/10.1109/icnn.1995.488968
  • 52. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680Google Scholar
  • 53. Koza JR (1992) Genetic programming. MIT Press, Cambridge
  • 54. Kuczera G (1997) Effiecient subspace probabilistic parameter optimization for catchment models. Water Resour 33:177–185
  • 55. Laloy E, Bielders CL (2009) Modelling intercrop management impact on runoff and erosion in a continuous maize cropping system: part II. Model Pareto multi-objective calibration and long-term scenario analysis using disaggregated rainfall. Eur J Soil Sci 60:1022–1037. https://doi.org/10.1111/j.1365-2389.2009.01190.x
  • 56. Lingireddy S, Ormsbee LE (2004) Optimal network calibration model based on genetic algorithms Srinivasa Lingireddy and Lindell E. Ormsbee. WRPMD’99, pp 1–8
  • 57. Maier H, Simpson A, Zecchin A, Foong W, Phang K, Seah H, Tan C (2003) Ant colony optimization for design of water distribution systems. J Water Resour Plan Manag ASCE 129:200–209. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  • 58. Moghaddam A, Behmanesh J, Farsijani A (2016) Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water Resour Manag 30(7):2143–2160
  • 59. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900
  • 60. Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1):127–145
  • 61. Muleta MK, Mcmillan J, Amenu GG, Burian SJ (2013) Bayesian approach for uncertainty analysis of an urban storm water model and its application to a heavily urbanized watershed. J Hydrol Eng 18:1360–1371. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000705
  • 62. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290
  • 63. Orouji H, Mahmoudi N, Fallah-Mehdipour E, Pazoki M, Biswas A (2016) Shuffled frog-leaping algorithm for optimal design of open channels. J Irrig Drain Eng 142(10):06016008-1–06016008-8
  • 64. Pohjola M (2006) PID controller design in networked control systems. Master Thesis. Department of Automaton and Systems Technology. Helsinki University of Technology
  • 65. Raphael B, Smith IF (2003) A direct stochastic algorithm for global search. Appl Math Comput 146(2):729–758
  • 66. Rechenberg I (1973) Evolutions strategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart
  • 67. Rossman LA (2010) Storm water management model user’s manual, version 5.0 p. 276. Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency
  • 68. Schwefel HP (1981) Numerical optimization of computer models. Wiley, Chichester
  • 69. Simpson AR, Goldberg DE (1994) Pipeline optimization via genetic algorithms: from theory to practice. In: Miller DS (ed) 2nd international conference on pipeline systems. BHR Group and Mech. Eng., Edinburgh, pp 309–320
  • 70. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120:423–443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
  • 71. Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7(4):270–292
  • 72. Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrological modeling of the iroquois river watershed using HSPF and SWAT1, pp 343–360
  • 73. Smalley JB, Minsker BS, Goldberg DE (2000) Risk-based in situ bioremediation design using a noisy genetic algorithm. Water Resour Res 36(10):3043–3052. https://doi.org/10.1029/2000WR900191
  • 74. Sorooshian S, Duan Q, Gupta VK (1993) Perviou: calibration of rainfall-runoff models’ application of global optimization to the Sacramento soil moisture accounting model. Water Resour Res 29:1185–1194
  • 75. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328
  • 76. Sumner NR, Fleming PM, Bates BC (1997) Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing. J Hydrol 197:166–188. https://doi.org/10.1016/S0022-1694(96)03277-5
  • 77. Temprano J, Arango O, Cagiao J, Suarez J, Tejero I (2007) Stormwater quality calibration by SWMM: a case study in Northern Spain. Water SA 32(1):55–63
  • 78. Throneburg M, Amico P, Labitzke M (2014) An optimization planning framework for cost-effective wet-weather planning. In: Proceedings of the Water Environment Federation, vol 4, pp 1–19
  • 79. Tolson BA, Shoemaker CA (2007) Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour Res 43:1–16. https://doi.org/10.1029/2005WR004723
  • 80. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325. https://doi.org/10.1016/S0020-0190(02)00447-7
  • 81. Van Liew MW, Veith TL, Bosch DD, Arnold JG (2007) Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. J Hydrol Eng 12(2):173–189
  • 82. Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1–19. https://doi.org/10.1029/2002WR001746
  • 83. Wan B, James W (2002) SWMM calibration using genetic algorithms. In: 9th Int. Conf. Urban Drain., vol 112, pp 92–105. https://doi.org/10.14796/jwmm.r208-07
  • 84. Wang QJ (1991) The genetic algorithm and its applications to calibrating conceptual rainfall-runoff models. Water Resour Res 27:2467–2471. https://doi.org/10.1029/91WR01305
  • 85. Wang L, Zhou YW (2009) Study on PSO multi-objective calibration of SWMM. China Water Wastewater 25(5):70–74
  • 86. Whitley D, Beveridge R, Graves C, Mathias K (1995) Test driving three 1995 genetic algorithms: new test functions and geometric matching. J Heuristics 1(1):77–104
  • 87. Yazdi J (2018) Rehabilitation of urban drainage systems using a resilience-based approach. Water Resour Manag 32(2):721–734
  • 88. Yazdi J, Yoo DG, Kim JH (2017) Comparative study of multi-objective evolutionary algorithms for hydraulic rehabilitation of urban drainage networks. Urban Water J 14(5):483–492
  • 89. Yu PS, Yang TC, Chen SJ (2001) Comparison of uncertainty analysis methods for a distributed rainfall–runoff model. J Hydrol 244(1):43–59
  • 90. Zheng C (1997) Modga documentation and user’s guide, technical report. Hydrogeology Group, Univ. of Ala., Birmingham
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-841fd8d7-2a88-49bd-bb12-fd2c7a0cb6ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.