PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bridge crack self-repairing based on nanosilica-modified bacterial solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To address the challenge of self-healing concrete cracks (CCs) in bridge structures, a nano-SiO2-modified bacterial solution was developed and systematically evaluated for its effectiveness in enhancing crack healing performance. Calcium lactate, used as a calcium source, increased the surface roughness of calcium carbonate crystals, enhancing Ca2+ adsorption and achieving a mineralization efficiency (ME) of 2.18 mol/h at 36 h. The optimized application process—three treatments at 15-minute intervals—significantly reduced the concrete’s chloride migration coefficient (8.48 × 10-13 m2/s), electrical flux (327 C), and carbonation depth (2.8 mm after 13 days). After 28 days, the bacterial group repaired over 95% of both primary and secondary crack areas. These improvements are attributed to nano-SiO2 providing a high specific surface area for microbial adhesion and promoting calcium carbonate precipitation, thus accelerating crack closure. The proposed nano-SiO2-modified bacterial solution offers a sustainable and efficient approach to enhancing the durability and protective performance of concrete in bridge applications.
Czasopismo
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Jiangxi Transportation Institute Co., Ltd, Nanchang, Jiangxi, China
  • Liuzhou Institute of Technology, Liuhou, Guangxi, China
autor
  • Sichuan Central Inspection Technology Inc., Zigong, Sichuan, China
autor
  • Sichuan Central Inspection Technology Inc., Zigong, Sichuan, China
Bibliografia
  • 1. Zhu, J., Shen, D., Xie, J., Jin, B. & Wu, S. (2022). Transformation mechanism of carbamic acid elimination and hydrolysis reaction in microbial self-healing concrete. Molecular Simulation. 48 (8), 719–735. DOI: 10.1080/08927022.2022.2049773.
  • 2. Xu, J., Wang, X., Yao, W., Kulminskaya, A. A. & Shah, S. P. (2024). Microbial-inspired self-healing of concrete cracks by sodium silicate-coated recycled concrete aggregates served as bacterial carrier. Frontiers of Structural and Civil Engineering. 18 (1), 14–29. DOI: 10.1007/s11709-023-0993-7.
  • 3. Njau, M. W., Mwero, J., Abiero-Gariy, Z. & Matiru, V. (2022). Effect of temperature on the self-healing efficiency of bacteria and on that of fly ash in concrete. Internat. J. Engin. Trends Technol. 70 (4), 174–187. DOI: 10.14445/22315381/IJETT-V70I4P215.
  • 4. Ali, M. F., Mukhtar, H. & Dufosse, L. (2023). Microbial calcite induction: A magic that fortifies and heals concrete. Internat. J. Environ. Sci. Technol. 20 (1), 1113–1134. DOI: 10.1007/s13762-022-03941-2.
  • 5. Yun, L. (2024). Investigation of crack healing and optimization of microbe carrier for microbial self-healing of concrete crack. Journal of The Korea Institute for Structural Maintenance and Inspection. 28 (4), 62–67. DOI: 10.11112/jksmi.2024.28.4.62.
  • 6. Abu el-Hassan, K., Hakeem, I. Y. Y., Amin, M., Tayeh, B. A. A., Zeyad, A. M. M., Agwa, I. S. & Elsakhawy, Y. (2024). Effects of nano titanium and nano silica on high-strength concrete properties incorporating heavyweight aggregate. Structural Concrete. 25 (1), 239–264. DOI: 10.1002/suco.202300232.
  • 7. Shim, S., Kim, J., Cho, G. C. & Lee, S. W. (2023). Stereo-vision-based 3d concrete crack detection using adversarial learning with balanced ensemble discriminator networks. Struct. Health Monitoring-an Internat. J. 22 (2), 1353–1375. DOI: 10.1177/14759217221097868.
  • 8. Jiang, L., Li, P., Wang, W., Zhang, Y. & Li, Z. (2024). A self-healing method for concrete cracks based on microbial-induced carbonate precipitation: Bacteria, immobilization, characterization, and application. J. Sust. Cement-Based Mat. 13 (2), 222–242. DOI: 10.1080/21650373.2023.2263447.
  • 9. Qian, C., Zheng, T. & Rui, Y. (2021). Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications—a review. Sci. China Technol. Sci. 64 (10), 2067–2083. DOI: 10.1007/s11431-021-1879-6.
  • 10. Zhang, X. & Qian, C. (2022). Engineering application of microbial self-healing concrete in lock channel wall. Marine Geores. & Geotechnol. 40 (1), 96–103. DOI: 10.1080/1064119X.2021.1871690.
  • 11. Garg, R., Garg, R. & Eddy, N. O. (2023). Microbial induced calcite precipitation for self-healing of concrete: A review. J. Sust. Cement-Based Mat. 12 (3), 317–330. DOI: 10.1080/21650373.2022.2054477.
  • 12. Hakeem, I. Y., Amin, M., Abdelsalam, B. A., Tayeh, B. A., Althoey, F. & Agwa, I. S. (2022). Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete. Struct. Engin. Mech. 82 (3), 295–312. DOI: 10.12989/sem.2022.82.3.295.
  • 13. Yunchao, T., Zheng, C., Wanhui, F., Yumei, N., Cong, L. & Jieming, C. (2021). Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete. Nanotechnol. Reviews. 10 (1), 819–838. DOI: 10.1515/ntrev-2021-0058.
  • 14. Tawfik, T. A., Metwally, K. A., El-Beshlawy, S., Al Saffar, D. M., Tayeh, B. A. & Hassan, H. S. (2021). Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties. J. King Saud Univ. Engin. Sci. 33 (8), 581–588. DOI: 10.1016/j.jksues.2020.06.007.
  • 15. Ali, R., Muayad, M., Mohammed, A. S. & Asteris, P. G. (2023). Analysis and prediction of the effect of nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches. Struct. Conc. 24 (3), 4161–4184. DOI: 10.1002/suco.202200718.
  • 16. Liang, Z., Hu, Z., Zhou, Y., Wu, Y., Zhou, X., Hu, B. & Guo, M. (2022). Improving recycled aggregate concrete by compression casting and nano-silica. Nanotechnol. Rev. 11 (1), 1273–1290. DOI: 10.1515/ntrev-2022-0065.
  • 17. Kannan, G. & Sujatha, E. R. (2022). A review on the choice of nano-silica as soil stabilizer. Silicon. 14 (12), 6477–6492. DOI: 10.1007/s12633-021-01455-z.
  • 18. Casalino, G., D’Amico, F., Bozzo, G., Dinardo, F. R., Schiavitto, M., Galante, D., Aceti, A., Ceci, E., Romito, D., D’Onghia, F. P., Dimuccio, M. M., Camarda, A. & Circella, E. (2024). In field evaluation of impact on clinical signs of an inactivated autogenous vaccine against Pasteurella multocida in rabbits. International J. Vet. Sci. Med. 12 (1), 39–47. DOI: 10.1080/23144599.2024.2348900.
  • 19. Ahmed Ibrahim Ali, O., Ibrahim Hassanin Mohamed, A., Ibrahim, W., Osama Abd-Al Ftah, R., R Hamed, S. & Fakhry M Abd-Elnaby, S. (2024). Enhancing concrete performance through microbial intervention: A comprehensive experimental study. Engin. Res. J. 183 (4), 85–106. DOI: 10.21608/erj.2024.311680.1087.
  • 20. Hui, R., Yuting, C., Dee, L., Yang, F. & Jianyun, W. (2022). Microbial-sodium alginate based external repair materials and their synergistic effect on crack repair. J. Chin. Ceramic Soc. 50 (8), 2087–2095. DOI: 10.14062/j.issn.0454-5648.20210855.
  • 21. Sivamani, J. (2023). Bio-remediation of cracks – a novel technique to self-heal cracks in the concrete. Europ. J. Environ. Civil Engin. 27 (14), 4086–4100. DOI: 10.1080/19648189.2023.2171140.
  • 22. Wang, J., Zhu, J., Li, Y., Zhang, S. & Feng, C. (2025). Evaluation and optimal width ratio selection of microbial mineralization technique in the repair of lining cracks in Xinjiang desert open channel. Scien. Reports. 15 (1), 1–16. DOI: 10.1038/s41598-025-01582-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-841ad930-9d2a-49e4-9020-df0dd8068d0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.