Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new type of self-healing gel was developed by using acrylamide (AM) and other materials, and the effects of the content of PEGDA200 and PEGDA400 on the mechanical properties of gel were compared. The results showed that adding PEGDA200 and PEGDA400 to the self-repairing gel significantly improved the performance of the composite gel. When the content of PEGDA200 in the gel was 0.2%, the rheological property after repair was 109.4% of that before repair, the compressive property after repair was 95.2% of that before repair, the adhesive property was increased by 36.8%, and the compressive strength after repair was 92.4% of that before repair. When the content of PEGDA400 in gel was 0.2%, the rheological property of gel after repair was 105.8% of that before repair, the maximum adhesion could be increased by 17.8%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
23--28
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wz.
Twórcy
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
autor
- Shaanxi Cooperative Innovation Center of Unconventional Oil and Gas Exploration and Development, Xi’an 710065, China
Bibliografia
- 1. Ji, R., Yu, X., Yang, H., Wang, X. & Su, G. (2024). Preparation and degradable mechanism of self-breaking gel valve for underbalanced drilling. Geoenergy Sci. Engin. 235, 212705. DOI: 10.1016/j.geoen.2024.212705.
- 2. Yang, J.B., Sun, J.S., Bai, Y.R., Lv, K.H., Wang, Z.Y., Xu, C.Y. & Wang, R. (2022). Review of the application of environmentally responsive gels in drilling and oil recovery engineering: Synthetic materials, mechanism, and application prospect. J. Petroleum Sci. Engin. 215, 110581. DOI: 10.1016/j.petrol.2022.110581.
- 3. Al-Darweesh, J., Aljawad, M.S., Al-Ramadan, M., Elkatatny, S., Mahmoud, M. & Patil, S. (2023). Review of under-balanced drilling techniques highlighting the advancement of foamed drilling fluids. J. Petrol. Explor. Prod. Technol. 13(4), 929–958. DOI: 10.1007/s13202-022-01596-w.
- 4. Bai, Y., Liu, Y., Yang, K. & Lang, Y. (2023). Application and research prospect of functional polymer gels in oil and gas drilling and development engineering. Gels, 9(5), 413. DOI: 10.3390/gels9050413.
- 5. Wang, R., Wang, C., Long, Y., Sun, J., Liu, L. & Wang, J. (2023). Preparation and investigation of self-healing gel for mitigating circulation loss. Advances in Geo-Energy Research, 8(2). DOI: 10.46690/ager.2023.05.05.
- 6. Yang, K., Bai, Y., Ma, J., Sun, J., Liu, Y., & Lang, Y. (2024). Functional Gels and Chemicals Used in Oil and Gas Drilling Engineering: A Status and Prospective. Gels, 10(1), 47. DOI: 10.3390/gels10010047.
- 7. Qu, Y., Zhou, X., Ren, H., Yuan, Y., Zhang, W., Yang, G., & Zhang, X. (2023). Study on self-healing gel plugging agent based on non-covalent bonding interaction for drilling fluid. J. Appl. Polym. Sci. 140(21), e53874. DOI: 10.1002/app.53874.
- 8. Wang, Y., Su, J., Liu, L., Liu, Z. & Sun, G. (2024). Waste cooking oil based capsules for sustainable self-healing asphalt pavement: Encapsulation, characterization and fatigue-healing performance. Construction and Building Materials, 425, 136032. DOI: 10.1016/j.conbuildmat.2024.136032.
- 9. Cerdan, K., Thys, M., Cornellà, A.C., Demir, F., Norvez, S., Vendamme, R. & Brancart, J. (2024). Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks. Progress in Polymer Sci., 101816. DOI: 10.1016/j.progpolymsci.2024.101816.
- 10. Han, J., Sun, J., Lv, K., Yang, J. & Li, Y. (2022). Polymer Gels Used in Oil–Gas Drilling and Production Engineering. Gels, 8(10), 637. DOI: 10.3390/gels8100637.
- 11. Liu, J., Zhang, X., Chen, X., Qu, L., Zhang, L., Li, W. & Zhang, A. (2018). Stimuli-responsive dendronized polymeric hydrogels through Schiff-base chemistry showing remarkable topological effects. Polymer Chem. 9(3), 378–387. DOI: 10.1039/C7PY01865G.
- 12. Xu, C., Zhan, W., Tang, X., Mo, F., Fu, L. & Lin, B. (2018). Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polymer Testing, 66, 155–163. DOI: 10.1016/j.polymertesting.2018.01.016.
- 13. Wang, S., Fan, X., Zhang, Z., Su, Z., Ding, Y., Yang, H. & Hu, P. (2024). A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness. ACS Nano. 18(26), 17175–17184DOI: 10.1021/acsnano.4c04100.
- 14. Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., & Gong, J.P. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials, 12(10), 932–937. DOI: 10.1038/nmat3713.
- 15. Luo, F., Sun, T.L., Nakajima, T., Kurokawa, T., Zhao, Y., Sato, K., & Gong, J.P. (2015). Oppositely charged poly-electrolytes form tough, self-healing, and rebuildable hydro-gels. Advanced materials, 27(17), 2722–2727. DOI: 10.1002/adma.201500140.
- 16. Jing, X., Mi, H.Y., Napiwocki, B.N., Peng, X.F., & Turng, L.S. (2017). Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon, 125, 557–570. DOI: 10.1016/j.carbon.2017.09.071.
- 17. Shao, C., Wang, M., Chang, H., Xu, F. & Yang, J. (2017). A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction. ACS Sustainable Chem. & Engin. 5(7), 6167–6174. DOI: 10.1021/acssuschemeng.7b01060.
- 18. Zhu, D., Bai, B. & Hou, J. (2017). Polymer gel systems for water management in high-temperature petroleum reservoirs: a chemical review. Energy & Fuels, 31(12), 13063–13087. DOI: 10.1021/acs.energyfuels.7b02897.
- 19. Ma, Z., Zhao, M., Yang, Z., Wang, X., & Dai, C. (2023). Development and gelation mechanism of ultra-high-temperature-resistant polymer gel. Gels, 9(9), 726. DOI: 10.3390/gels9090726.
- 20. Li, J.J., Xiong, C.M., Bai, Y.R., Jiang, R.Y., Wei, F.L., & Zhang, M. (2017). Leak-off behavior and water shut-off performance of a polymer/chromium (Cr3+) gel in fractured media. J. Central South Univ. 24(6), 1418–1429. DOI: 10.1007/s11771-017-3546-1.
- 21. Ganguly, S. (2010). Leak-off during placement of Cr (III)-partially hydrolyzed polyacrylamide gelling solution in fractured porous media. Transport in porous media, 81(3), 443–460. DOI: 10.1007/s11242-009-9416-z.
- 22. Li, D., Gao, H., Li, M., Chen, G., Guan, L., He, M. & Cao, R. (2020). Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels. Carbohyd. Polym. 236, 116061. DOI: 10.1016/j.carbpol.2020.116061.
- 23. Li, Q., Li, Q., Wang, F., Wu, J. & Wang, Y. (2024). The carrying behavior of water-based fracturing fluid in shale reservoir fractures and molecular dynamics of sand-carrying mechanism. Processes, 12(9), 2051. DOI: 10.3390/pr12092051.
- 24. Li, Q., Li, Q. & Han, Y. (2024). A numerical investigation on kick control with the displacement kill method during a well test in a deep-water gas reservoir: A case study. Processes, 12(10), 2090. DOI: 10.3390/pr12102090.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8416c4e7-0128-4d5e-8444-2957f8efec19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.