PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of intake valve close timing on the environmental performance of a spark ignition engine using gasoline and natural gas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tightening of environmental requirements has forced car manufacturers to look for various ways to reduce exhaust gas emissions. The existing structural solutions of internal combustion engines allow this type of pollution to be reduced by adjusting the intake valve timing. This is especially relevant when it comes to reducing spark ignition engine emissions when using natural gas as fuel. In this study, a wide range of intake valve timing adjustments from 24° to 54° every six crank angle degrees was taken at a constant engine speed (n = 2500 rpm) and different loads and fixed excess air ratios (λ = 1). The changes in oxygen (O2), carbon monoxide (CO), carbon dioxide (CO2), nitrous oxide (NOx), methane (CH4), and propane (C3H8) gas emissions were observed in the aforementioned intake valve timing range.
Czasopismo
Rocznik
Strony
175--187
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Vilnius Gediminas Technical University, Faculty of Transport Engineering; Plytinės Str. 25, LT-10105 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Transport Engineering; Plytinės Str. 25, LT-10105 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Transport Engineering; Plytinės Str. 25, LT-10105 Vilnius, Lithuania
Bibliografia
  • 1. Menzel, C & Torresan, C. & Knight, J. & Raines, C. & Sapp, D. & Patel, M. & et al. Electronic Continuous Variable Valve Timing for Small SI Engine. SAE Technical Paper. 2008. No. 2008-01-1778.
  • 2. Matijošius, J. & Juciūtė, A. & Rimkus, A. & Zaranka, J. Investigation of the concentration of particles generated by public transport gas (CNG) buses. CogSust. 2022. Vol. 1(1). Available at: https://www.cogsust.com/index.php/real/article/view/10.
  • 3. Ghazal, OHM & Najjar, YSH & Al-Khishali, KJM. Modeling the Effect of Variable Timing of the Exhaust Valves on SI Engine Emissions for Greener Vehicles. EPE. 2013. Vol. 05(03). P. 181-189.
  • 4. Alger, T. & Wooldridge, S. Measurement and Analysis of the Residual Gas Fraction in an SI Engine with Variable Cam Timing. SAE Transactions. 2004. Vol. 113. P. 860-869.
  • 5. Vrublevskyi, O. & Wierzbicki, S. Analysis of potential improvements in the performance of solenoid injectors in diesel engines. Eksploatacja i Niezawodność - Maintenance and Reliability. 2023. Vol. 25(3). 11 p.
  • 6. Rimkus, A. & Vipartas, T. & Kriaučiūnas, D. & Matijošius, J. & Ragauskas, T. The effect of intake valve timing on spark-ignition engine performances fueled by natural gas at low power. Energies. 2022. Vol. 15(2). No. 398. 21 p.
  • 7. Caban, J. & Droździel, P. & Ignaciuk, P. & Kordos, P. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process. Transport Problems. 2019. Vol. 14(4). P. 51-62.
  • 8. Takahashi, D. & Nakata, K. & Yoshihara, Y. & Ohta, Y. & Nishiura, H. Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles. SAE International. 2015. Report No. 2015-01-1254.
  • 9. Zöldy, M. Investigation of Correlation Between Diesel Fuel Cold Operability and Standardized Cold Flow Properties. Periodica Polytechnica Transportation Engineering. 2019. DOI: 10.3311/PPtr.14148.
  • 10. Payri, R. & Novella, R. & Barbery, I. & Bori-Fabra, O. Numerical and experimental evaluation of the passive pre-chamber concept for future CNG SI engines. Applied Thermal Engineering. 2023. No. 120754.
  • 11. Borucka, A. & Wiśniowski, P. & Mazurkiewicz, D. & Świderski, A. Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement. 2021. Vol. 174. No. 108998.
  • 12. Chen, H. & He, J. & Zhong, X. Engine combustion and emission fuelled with natural gas: A review. Journal of the Energy Institute. 2019. Vol. 92(4). P. 1123-1136.
  • 13. Prasad, RK. & Agarwal, AK. Development and comparative experimental investigations of laser plasma and spark plasma ignited hydrogen enriched compressed natural gas fueled engine. Energy. 2021. Vol. 216. No. 119282.
  • 14. Li, Q & Liu, J. & Fu, J. & Zhou, X. & Liao, C. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering. 2018. Vol. 137. P. 710-720.
  • 15. Ji, C. & Hong, C. & Wang, S. & Xin, G. & Meng, H. & Yang, J. et al. Evaluation of the variable valve timing strategy in a direct-injection hydrogen engine with the Miller cycle under lean conditions. Fuel. 2023. Vol. 343. No. 127932.
  • 16. Li, Y. & Han, D. & Wang, Z. & Bi, C. & Jing, Y. & Sui, J. et al. A novel combined throttle opening and variable valve timing strategy for combined cooling, heating, and power system flexibility. Applied Thermal Engineering. 2023. Vol. 219. No. 119688.
  • 17. Khudhur, S. & Saleh, A. & Chaichan, M. The Effect of Variable Valve Timing on SIE Performance and Emissions. International Journal of Scientific & Engineering Research. 2015. Vol. 6. P. 173-179.
  • 18. Miura, T. & Aoyama, S. & Onogawa, K. & Fujia, T. & Murata, T. & Ariga, K. et al. Development of a Hydraulic Variable Valve Timing Control System with an Optimum Angular Position Locking Mechanism. SAE International. 2012. Report No. 2012-01-0416.
  • 19. Heywood, JB. Internal combustion engine fundamentals. Second edition. New York: McGraw-Hill Education; 2018. 1028 p.
  • 20. Kim, S. & Park, C. & Jang, H. & Kim, C. & Kim, Y. Effect of boosting on a performance and emissions in a port fuel injection natural gas engine with variable intake and exhaust valve timing. Energy Reports. 2021. Vol. 7. P. 4941-4950.
  • 21. Wang, J. & Duan, X. & Wang, W. & Guan, J. & Li, Y. & Liu, J. Effects of the continuous variable valve lift system and Miller cycle strategy on the performance behavior of the lean-burn natural gas spark ignition engine. Fuel. 2021. Vol. 297. No. 120762.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8412f833-dbef-46f5-8681-f8e3a30ee260
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.