Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to improve the biocompatibility of NiTi shape memory alloy, the surface was modified by formation of multifunctional layer consisted of titanium oxides and whitlockite ceramic. Amorphous TiO2 interlayer was produced on NiTi substrate by autoclaving at 134°C for 30 minutes while the following whitlockite coatings were deposited using electrophoresis (EPD). Electrophoresis was performed under different voltage (from 20 to 80 V) at time periods (from 30 to 120 s). Applied deposition parameters 20 V and 60 s resulted in forming homogenous whitlockite coating, consisted of β-Ca3(PO4)2 and β-Ca2P2O7, on passivated NiTi alloy. In the next step, the material was heat-treated in vacuum condition at 1000°C for 2 h. As a result of sintering crystallization of titanium oxides was observed. The obtained layer was cracks-free. Applied deposition process increased the roughness of surface. Deposited whitlockite agglomerates had an average thickness ca. 5.6 μm. The structure of CaP coating material after applied heat-treatment remained unchanged in comparison to initial powder material. However, the partial decomposition of NiTi parent phase to equilibrium ones was observed. The whitlockite coating was also observed to have no impact on the martensitic transformation responsible for shape memory effect. Additionally, applied sintering condition changed the sequence of martensitic transformation from one to two-step.
Czasopismo
Rocznik
Tom
Strony
2--6
Opis fizyczny
Bibliogr. 18 poz., tab., wykr., zdj.
Twórcy
autor
- University of Silesia, Institute of Materials Science, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
autor
- University of Silesia, Institute of Materials Science, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
Bibliografia
- [1] Morawiec H., Lekston Z.: Implanty medyczne z pamięcią kształtu. Wyd. Politechniki Śląskiej, Gliwice 2010.
- [2] Yoneyama T., Miyazaki S.: Shape memory Alloys for biomedical applications, Woodhead Publishing Limited, Cambridge 2009.
- [3] Es-Souni M., Es-Souni M., Fischer-Brandies H.: Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381 (2005) 557-567.
- [4] Shabalovskaya S. A., Anderegg J., Van Humbeeck J.: Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater 4 (2008) 447-467.
- [5] Sun F., Sask K., Brash J. L., Zhitomirsky I.: Surface modification of Nitinol for biomedical applications. Colloid Surface B 67 (2008) 132-139.
- [6] J. Lelątko, T. Goryczka: Modyfikacja powierzchni stopów NiTi wykazujących pamięć kształtu. Oficyna Wydawnicza WW, Katowice (2013).
- [7] D. Krause, B. Thomasa, Ch. Leinenbach, D. Eifler, E.J. Minay, A.R. Boccaccini: The electrophoretic deposition of Bioglass particles on stainless steel and Nitinol substrates. Surface & Coatings Technology 200 (2006) 4835-4845.
- [8] Dorozhkin S.V.: Calcium Orthophosphates in Nature. Biology and Medicine, Materials 2 (2009) 399-498.
- [9] Malysheva A.Yu., Beletskii B.I.: Biocompatibility of Apatite-Containing Implant Materials. Inor Mater Vol.37 No.2 (2001) 180-183.
- [10] Horowitz R.A., Mazor Z., Foitzik Ch., Prasad H., Rohrer M., Palti A.: ß-Tricalcium Phosphate as Bone Substitute Material: Properties and Clinical Applications. Titanium (2009) 2-11.
- [11] Dorozhkin S.V.: Calcium orthophosphate coatings, films and layers. Progress in Biomaterials (2012) 2-40.
- [12] Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I.: Electrophoretic deposition of biomaterials, J R Soc Interface 7 (2010) S580-S613.
- [13] Zhitomirsky I.: Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects, Adv Colloid Interfac 97 (2002) 279-317
- [14] T. Goryczka, K. Dudek: Structure of multi-functional calcium phosphates/TiO2 layers deposited on NiTi shape-memory alloy. Powder Diffraction (in press, DOI: 10.1017/S0885715617000239)
- [15] O. Albayrak, O. El-Atwani, S.Altintas: Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surface & Coatings Technology 202 (2008) 2482–2487.
- [16] K. Dudek, M. Plawecki, M. Dulski, J. Kubacki: Multifunctional layers formation on the surface of NiTi SMA during β-tricalcium phosphate deposition. Materials Letters 157 (2015) 295-298.
- [17] K. Dudek, T. Goryczka: Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy. Ceramics International 42 (2016) 19133-19141.
- [18] A. B. Jr. Novaes, S. L. de Souza, R. R. de Barros, K. K. Pereira, G. Iezzi, A. Piattelli: Influence of implant surfaces on osseointegration. Brazilian Dental Journal 21 (6) (2010) 471-481.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84105cc0-157e-4071-a8c2-3b614413c563