PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing a Low-Cost Multi-Media Filter with Biological Contact Aeration for Greywater Treatment in Domestic Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Treatment and reuse of greywater for non-potable applications especially in scarce countries is a feasible option. In this study, a simple greywater treatment system consisting of a low-cost simple multi-media filter with biological contact aeration system was developed and installed in a selected household in Muscat, the capital of Oman. Monitoring and measurements were made to investigate the productivity and efficiency of this system in treating the greywater from laundry and shower sources. The greywater from the collected laundry and shower contained 360 mg/L of COD and 28.5 mg/L of BOD. The experimental results showed that the greywater treatment unit achieved more than 99% of turbidity removal, more than 74% of BOD removal, and more than 50% of COD removal. BOD removal was primarily achieved through bacterial degradation whereas COD removal was attributed to the adsorption of organic compounds by activated carbon. The effluent quality of the treated greywater fell within the standard level and can be safely reused for various non-potable applications.
Rocznik
Strony
258--267
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Civil Engineering Department, Faculty of Engineering, Islamic University of Madinah, Saudi Arabia
  • Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi Arabia
autor
  • Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur, Bangladesh
  • Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia
Bibliografia
  • 1. Abdel-Kader, A.M. 2013. Studying the efficiency of grey water treatment by using rotating biological contactors system. Journal of King Saud University-Engineering Sciences, 25(2), 89–95.
  • 2. American Public Health Association (APHA) 2012. Standard Methods for the Examination of Water and Wastewater, 20th edn. American Water Works Association and Water Environmental Federation, Washington, DC.
  • 3. Alfiya, Y., Gross, A., Sklarz, M., Friedler, E. 2013. Reliability of on-site greywater treatment systems in Mediterranean and arid environments – a case study. Water Science and Technology, 67(6), 1389–1395.
  • 4. Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M. R., Alkasrawi, M. 2015. On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476, 40–49.
  • 5. Boddu, V.M., Paul, T., Page, M.A., Byl, C., Ward, L., Ruan, J. 2016. Gray water recycle: effect of pretreatment technologies on low pressure reverse osmosis treatment. Journal of Environmental Chemical Engineering, 4(4), 4435–4443.
  • 6. Chen, C.-K., Liang, H.-C., Lo, S.-L. 2020. Feasibility Study of Activated Sludge/Contact Aeration Combined System Treating Oil-Containing Domestic Sewage. Int. J. Environ. Res. Public Health, 17, 544.
  • 7. Chanakya, H.N., Khuntia, H.K. 2013. Treatment of Gray Water Using Anaerobic Biofilms Created on Synthetic and Natural Fibers. Process Safety and Environmental Protection, 91(1–2), 1–158.
  • 8. Ding, A., Liang, H., Li, G., Szivak, I., Traber, J., Pronk, W. 2017. A low energy gravity-driven membrane bioreactor system for grey water treatment: permeability and removal performance of organics. Journal of Membrane Science, 542, 408–417.
  • 9. Domènech, L., Saurí, D. 2010. Socio-technical transitions in water scarcity contexts: public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona. Retour Conser Recy, 55(1), 53–9.
  • 10. Friedler, E., Lahav, O. 2006. Centralised urban wastewater reuse: what is the public attitude. Water Science. Technology, 54(6–7),423–7.
  • 11. Gibson, H.E., Apostolidis, N. 2001. Demonstration, the solution to successful community acceptance of water recycling. Water Science. Technology, 43(10), 259–266.
  • 12. Hasan, M.M., Shafiquzzaman, M. Nakajima, J., Ahmed, A.T., Azam, M.S. 2015. Application of a Low Cost Ceramic Filter to a Membrane Bioreactor for Greywater Treatment, Water Environment Research, 87(3), 233-241.
  • 13. Jamrah, A., Al-Futaisi, A., Prathapar, S., Al –Harrasi, A. 2008. Evaluating greywater reuse potential for sustainable water resources management in Oman. Environ. Monit. Assess. 137, 315–327.
  • 14. Kantanoleon, N., Zampetakis, L., Manios, T. 2007. Public perspective towards wastewater reuse in a medium size, seaside, Mediterranean city: a pilot survey. Resour Conser Recy, 50(3),282–310.
  • 15. Li, F., Wichmann, K., Otterpohl, R. 2009. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ., 407, 3439–3449.
  • 16. Metcalf Eddy, I., Asano, T., Burton, F.L., Leverenz, H., Tsuchihashi, R., Tchobanoglous, G. 2007. Water Reuse. McGraw-Hill Professional Publishing, New York.
  • 17. Mohammad-Pajooh, E., Turcios, A.E., Cuff, G., Weichgrebe, D., Rosenwinkel, K.-H., Vedenyapina, M., Sharifullina, L. 2018. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. . J. Environ. Manag. 228, 189–196
  • 18. Mozaheb, S.A., Ghaneian, M.T., Ghanizadeh, G. H., Fallahzadeh, M., 2010. Evaluation of the stabilization ponds performance for municipal wastewater treatment in Yazd-Iran. Middle-East J. Sci. Res. 6, 76–82.
  • 19. Nolde, E. 1999. Greywater Reuse Systems for Toilet Flushing in Multi-story Buildings-over Ten Years Experiences in Berlin. Urban Water, 1 (4), 275–284.
  • 20. Oteng-Peprah, M., Acheampong, M.A., deVries, N.K. 2018. Greywater Characteristics, Treatment Systems, Reuse Strategies and User Perception—a Review. Water Air Soil Pollut 229, 255 (2018).
  • 21. Paulo, P.L., Azevedo, C., Begosso, L., Adriana, F., Galbiati, A.F., Boncz, M.A. 2013. Natural systems treating greywater and blackwater on-site: Integrating treatment, reuse and landscaping. Ecol. Eng., 50, 95 –10.
  • 22. Prajapati, B., Jensen, M., Jørgensen, N., Petersen, N. 2019. Grey water treatment in stacked multi-layer reactors with passive aeration and particle trapping. Water Research, 161, 181–190.
  • 23. Santos, C., Taveira-Pinto, F., Cheng, C.Y., Leite D. 2012. Development of an Experimental System for Greywater Reuse, Desalination, 285, 301–305.
  • 24. Shafiquzzaman, M., Haider, H., AlSaleem, S.S., Ghumman, A.R., Sadiq, R. 2018. Development of Consumer Perception Index for assessing grey-water reuse potential in arid environments. Water SA, 44(4), 771–781.
  • 25. Troy, W.H. 2006. Public perception and participation in water reuse. Desalination, 187(1–3), 115–26.
  • 26. World Health Organization (WHO). 2006. Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 4: Excreta and Greywater Use in Agriculture. WHO, Geneva 2006.
  • 27. Zipf, M.S., Pinheiro, I.G., Conegero, M.G. 2016. Simplified greywater treatment systems: slow filters of sand and slate waste followed by granular activated carbon, J. Environ. Manage., 176, 119–127.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-840bc6a6-bb91-485b-99ac-962974bf1fd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.