Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study summarises the results of experimental examination of velocity sensing capability in a prototype of a magnetorheological damper with power generation (MRD). The device has two main components: an electromagnetic power generator and an MR damper. The study outlines the structure of the device with the main focus on the generator part, and provides results of tests performed under the idle run. The discussion of demonstrates the potentials of MRD action as a velocity-sign sensor and presents key issues which need to be addressed to enable its real life applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
186--189
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- Department of Process Control, AGH University of Science and Technology, aleja Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
- 1. Chen C., Liao W. H. (2010), A self-powered, self-sensing magnetorheological damper, Proceedings of IEEE Conference on Mechatronics and Automation, 1364-1369.
- 2. Chen C., Liao W. H. (2012), A self-sensing magnetorheological damper with power generation, Smart Materials and Structures, 21, 025014.
- 3. Jansen L. M., Dyke S. J. (2000), Semi-active control strategies for MR dampers. ASCE, Journal of Engineering Mechanics, 126(8), 795–803.
- 4. Jung H. J., Jang D. D., Cho S. W., Koo J. H. (2009), Experimental verification of sensing capability of an electromagnetic induction system for an MR fluid damper based control system, 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Journal of Physics: Conference Series, 149, 012058.
- 5. Jung H. J., Jang D. D., Koo J. H., Cho S. W. (2010), Experimental Evaluation of a ‘Self-Sensing Capability of an Electromagnetic Induction System Designed for MR Dampers, Journal of Intelligent Material Systems and Structures, 21, 837−836.
- 6. Karnopp D. C., Crosby M. J., Harwood R. A. (1974), Vibration control using semi-active force generator, ASME Journal of Engineering for Industry, 96(2), 619-626.
- 7. Li Z, Zhuo L, Luhrs G, Lin L., Qin Y.( 2013b), Electromagnetic Energy harvesting shock absorbers: design, modeling and road tests, IEEE Transactions Vehicle Technology, 62, 1065–74.
- 8. Li Z., Zhuo L., Kuang J., Luhrs G. (2013a), Energy-Harvesting Shock Absorber with a Mechanical Motion Rectifier, Smart Materials and Structures, 22, 028008.
- 9. Sapiński B. (2011), Experimental study of a self-powered and sensing MR damper-based vibration control system, Smart Materials and Structures, 20, 105007.
- 10. Sapinski B. (2014), Energy harvesting MR linear damper: prototyping and testing, Smart Materials and Structures, 23, 035021.
- 11. Sapinski B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.
- 12. Wang D. H., Bai X. X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.
- 13. Wang D. H., Bai X. X., Liao W. H. (2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, 19, 105008.
- 14. Zhu S. Y., Shen W. A., Xu Y. L., Lee W. C. (2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, 34, 198-212.
- 15. www.mts.com
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-840b364a-28bf-4990-9481-f5764b0e72f0