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Abstract: The paper presents the exact solution of the antiplane problem for an inhomogeneous bimaterial with the interface crack ex-
posed to the normal load and cyclic loading by a concentrated force in the longitudinal direction. Using discontinuity function method the 
problem is reduced to the solution of singular integral equations for the displacement and stress discontinuities at the domains with sliding 
friction. The paper provides the analysis of the effect of friction and loading parameters on the size of these zones. Hysteretic behaviour 
of the stress and displacement discontinuities in these domains is observed. 
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1. INTRODUCTION 

The account of friction in studying of the contact phenomena 
is one of the most urgent problems of mechanical engineering and 
materials science in the analysis of the phenomena and process-
es occurring in moving elements of cars, during various techno-
logical operations (Goryacheva, 2001; Comninou, 1977; Panasiuk 
et al., 1976; Sulym and Piskozub, 2004; Johnson, 1985; Hills 
et al.,1993; Ulitko and Ostryk, 2006; Datsyshyn et al., 2006). 
Thus, friction can be accompanied with electric, thermal, vibrating 
and chemical processes, which damp the internal dynamic pro-
cesses essentially influencing the intensity materials wear, and 
consequently the reliability and durability of the structural ele-
ments made of them (Sosnovskiy, 2005; Bogdanovich and 
Tkachuk, 2009; Evtushenko and Kutsei, 2010; Pasternak et al., 
2010; Pyrievet al., 2012). Friction influence can be both negative 
and positive. 

From the point of view of structural integrity mechanics, fric-
tion of crack faces at their relative displacement is useful in most 
cases, since it causes internal strain energy dissipation, and 
consequently reduces the stress concentration, which reduces 
or even eliminates alternating plastic deformations at alternating 
loading. It is also known that development of the residual stress 
field thus assists in the adaptation of a material to operational 
loadings. The compression of composite materials arising doe to 
friction forces improves shear stress redistribution even in the 
case of macroscopic fracture of a fiber-matrix interface. 

Negative consequences of a friction are mainly the wear 
of contacting surfaces, and also thermal emission. At excessive 
intensity the latter can sometimes cause unpredictable change 
in mechanical, physical and chemical properties of a material, 
distribution of physical fields, and consequently influence the 
diffusive processes, in particular hydrogen diffusion, and devel-
opment of the fracture phenomena warned by tribofatigue (Sos-
novskiy, 2005; Evtushenko and Kutsei, 2010, Pyriev et al., 2012). 

This paper continues previous authors’ publication (Sulym 
et al., 2015) and develops the technique for studying the influence 
of friction in the antiplane problem for a solid with a closed crack 
under the applied quasi-static (inertia-free) repeatedly changing 
loading, including cyclic one. The most general case is consid-
ered, when at each step the loading can either increase (addition-
al loading) or change sign (unloading) reaching sufficient magni-
tude, which causes development of slippage zones.  

2. PROBLEM STATEMENT 

Problem statement coincides with those resulted earlier in 
Sulym and Piskozub (2004) except the way of loading. Here it is 
supposed, that a medium is subject to repeatedly changing load-
ing, which cause the quasi-static antiplane deformation of a solid 
and corresponding stress strain state (in-plane loading is as-
sumed to be constant). As the special case the cyclically changing 
loading can be considered, which is performed within the pattern 
loading-unloading-loading-... 

As well as in the previous work (Sulym et al., 2015), consider 
an infinite isotropic medium consisting of two half-spaces with 

elastic constants 𝐸𝑘 , 𝜈𝑘 , 𝐺𝑘     (𝑘 = 1,2), which are pressed to 
each other along their interface 𝐿 with normal stress 𝜎𝑦𝑦𝑘 =

−𝑃  (𝑘 = 1,2;   𝑥 ∈ 𝐿). Here the system of co-ordinates 𝑂𝑥𝑦𝑧 

is used, with its origin at a plane 𝑥𝑂𝑧 of contact of half-spaces, 

where 𝑁𝑂𝑧-coaxial strip cracks are localized at 𝐿′ = ∪
𝑛=1

𝑁
𝐿′𝑛 =

∪
𝑛=1

𝑁
[𝑎𝑛

−;   𝑎𝑛
+] (Fig. 1). 

Thus, the problem is reduced to study of stress strain state 

(SSS) of a cross-section 𝑥𝑂𝑦 perpendicular to a direction 𝑧 of its 
longitudinal (out-of-plane) displacement. The half-spaces perpen-
dicular to this axis form to half-planes 𝑆𝑘   (𝑘 = 1, 2), and their 

interface correspond to the abscissa 𝐿~𝑥. 
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Fig. 1. The loading and geometric scheme of the problem 

Thus, the problem is reduced to study of stress strain state 

(SSS) of a cross-section 𝑥𝑂𝑦 perpendicular to a direction 𝑧 of its 
longitudinal (out-of-plane) displacement. The half-spaces perpen-

dicular to this axis form to half-planes 𝑆𝑘   (𝑘 = 1,2), and their 

interface correspond to the abscissa 𝐿~𝑥.  
The application of similar traditional notation for an axis 𝑧 and 

a complex variable 𝑧 = 𝑥 + 𝑖𝑦 should not cause misunderstand-
ing in the solution of the problem. 

Contact between the bimaterial medium components along 

a line 𝐿′′ = 𝐿\𝐿′ is supposed to be mechanically perfect, and the 

contact along defects’ (cracks’) faces 𝐿′ is assumed to be per-
formed according to the laws of tangential mechanic contact, 
at which bodies contact mechanically perfect until the moment, 
when relative sliding of crack faces may start in some areas 

𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛  at the material interface (Johnson, 1985; Sulym et al., 
2015). 

Presence of such slippage zones (cracks with contacting fac-

es) at each 𝑝-th step of loading (cycle) is modeled with stress and 

displacement discontinuity vectors at 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛  (Bozhydarnyk 

and Sulym, 1999; Sulym, 2007; Piskozub and Sulim, 2008): 

[Ξ]
𝐿′

≡ Ξ− − Ξ+ = 𝐟(𝑝)(𝑥, 𝑡),           (1) 

for 𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁),    

𝐟(𝑝)(𝑥, 𝑡) = 0, if 𝑥 ∉ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 ,           (2) 

where Ξ(𝑧, 𝑡) = {𝜎𝑦𝑧 , ∂𝑤 ∂𝑥⁄ }(𝑧, 𝑡) is a state vector;  

𝐟(𝑝)(𝑥, 𝑡) = {𝑓3(𝑝), 𝑓6(𝑝)}(𝑥, 𝑡) is a discontinuity vector; 𝑝 in 

brackets denote the number of loading step (cycle); 𝑡 is time as 
a formal monotonously increasing parameter related with the 
convertible loading. The following notation are used hereinafter: 
[𝜙] = 𝜙(𝑥, −0) − 𝜙(𝑥, +0), ⟨𝜙⟩ = 𝜙(𝑥, −0) + 𝜙(𝑥, +0); 
indices "+" and "–" correspond to the limit values of a function at 
the top and bottom edges of a line 𝐿. 

The friction contact conditions at the closed crack provide that 

at the achievement by tangent traction 𝜎𝑦𝑧 at the lines 𝛾𝑛
(𝑝)

 of 

a certain critical value 𝜏𝑦𝑧
max the slippage occurs, and the tangent 

traction cannot exceed this threshold. Thus, within the classical 
Amontons’ law of friction (Johnson, 1985), consider a variant of 
a contact problem according to which the tangent traction (friction 

traction) is constant along the lines 𝛾𝑛
(𝑝)

: 

𝜎𝑦𝑧
± = −𝑠𝑔𝑛([𝑤](𝑝))𝜏𝑦𝑧

𝑚𝑎𝑥 ,    

𝜏𝑦𝑧
𝑚𝑎𝑥 = −𝛼𝜎𝑦𝑦(|𝑤− − 𝑤+| ≠ 0)

,                          (3) 

where 𝛼 is a coefficient of dry friction. Outside the lines 𝛾𝑛
(𝑝)

, 

which belong to 𝐿′𝑛 , the tangent traction at the crack points 
without slippage does not exceed the possible admissible level 

|σyz| ≤ τyz
max(w− − w+ = 0),           (4) 

and the mutual crack face displacement (displacement discontinu-
ity) is absent. The sign (an action direction) of tangent traction 
is chosen depending on a sign of the difference of displacements 

[𝑤](𝑝) at a considered point of 𝛾𝑛
(𝑝)

. 

3. THE PROBLEM SOLUTION 

Assume that the magnitude and direction of action of the ex-
ternal mechanical loading factors, which perform the longitudinal 
shear of a medium, change quasi-statically (so slowly that there 
is no necessity to consider inertial terms) under the certain law 
which can be arbitrary. Let the external loading of the problem be 
defined by monotonously changing in time intervals 

[𝑡(𝑝−1);   𝑡(𝑝)] step-by-step sequences of the following factors: 

stress 𝜎𝑦𝑧
∞ = ∑ 𝜏(𝑝)(𝑡)𝑝 , 𝜎𝑥𝑧

∞ = ∑ 𝜏𝑘(𝑝)(𝑡)𝑝  uniformly distribut-

ed at the infinity; the concentrated forces with magnitude 

𝑄𝑘(𝑡) = ∑ 𝑄𝑘(𝑝)(𝑡)𝑝 , and screw dislocations with Burgers 

vectors 𝑏𝑘(𝑡) = ∑ 𝑏𝑘(𝑝)(𝑡)𝑝  applied at the points 𝑧∗𝑘 ∈

𝑆𝑘(𝑘 = 1, 2). It should be noticed that the positive direction of 

force and Burgers vectors is selected along 𝑧-axis (such that it 
along with 𝑥 and 𝑦 axes forms the right rectangular coordinate 
system), unlike Panasyuk et al. (1976), where the opposite direc-
tions is implicitly accepted as a positive one. According to (20.5) 
Sulym (2007), at each moment of time stress at the infinity should 
satisfy the condition: 

𝜏2(𝑝)(𝑡)𝐺1 = 𝜏1(𝑝)(𝑡)𝐺2,           (5) 

which provides straightness of the material interface at the infinity. 
The first (initial) step of loading and the SSS produced by it 

are considered in details in Ref [17], where the resulting system of 
singular integral equations (SSIE) is obtained 

{
𝑓3(1)(𝑥, 𝑡) = 0,                  (𝑥 ∈ 𝐿′),

𝑔6(1)(𝑥, 𝑡) =   
1

2𝐶
(⟨𝜎𝑦𝑧(1)

0 (𝑥, 𝑡)⟩ + 2sgn[𝑤](1)𝜏𝑦𝑧
max),

       (6) 

which has the following closed-form solution: 

𝑓6(1)(𝑥, 𝑡) =
𝑋0

∗+(𝑥)

𝜋𝑖
∫

𝐹6(1)(𝑠,𝑡)𝑑𝑠

𝑋0
∗+(𝑠)(𝑠−𝑥)𝐿′

+

𝑋0
∗+(𝑥)𝑄𝑛−1(𝑥), (𝑥 ∈ 𝐿′), 

𝑋0
∗(𝑧) = ∏ [(𝑧 − 𝑎𝑛(1)

− )(𝑧 − 𝑎𝑛(1)
+ )]

−1 2⁄𝑁
𝑛=1 ,                      (7) 

where the factors at polynomials 𝑄𝑛−1(𝑥) are determined from 
additional displacement continuity conditions at each crack: 

∫ 𝑓6(1)(𝑠, 𝑡)𝑑𝑠
𝑎𝑛(1)

+

𝑎𝑛(1)
− = 0    (𝑛 = 1, 𝑁).          (8) 

Here and further for each step the following notation is used 
(Sulym et al., 2015): 

𝜎𝑦𝑧(𝑝)
0 (𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑝)

0 (𝑧, 𝑡) = 𝜏(𝑝)(𝑡) +  𝑖{𝜏𝑘(𝑝)(𝑡) 

+𝐷𝑘(𝑝)(𝑧, 𝑡) + (𝑝𝑘 − 𝑝𝑗)𝐷𝑘(𝑝)(𝑧, 𝑡) + 2𝑝𝑘𝐷𝑗(𝑝)(𝑧, 𝑡)},  

𝐷𝑘(𝑝)(𝑧, 𝑡) = −
𝑄𝑘(𝑝)(𝑡) + 𝑖𝐺𝑘𝑏𝑘(𝑝)(𝑡)

2𝜋(𝑧 − 𝑧∗𝑘)
, (𝑧 ∈ 𝑆𝑘 ,

𝑘 = 1, 2), 

𝑔𝑟(𝑝)(𝑧, 𝑡) =
1

𝜋
∫

𝑓𝑟(𝑝)(𝑥, 𝑡)𝑑𝑥

𝑥 − 𝑧𝐿′
,   

𝐶 =
𝐺1𝐺2

𝐺1 + 𝐺2

, 𝑝𝑘 =
𝐶

𝐶𝑗

. 

(9) 

and SSS components are defined by relations 
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(
(14) 

1
(18) 

𝜎𝑦𝑧(1)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡) = 𝜎𝑦𝑧(1)
0 (𝑧, 𝑡) 

+𝑖𝜎𝑥𝑧(1)
0 (𝑧, 𝑡) + 𝑖𝑝𝑘𝑔3(1)(𝑧, 𝑡) −  𝐶𝑔6(1)(𝑧, 𝑡)

(𝑧 ∈ 𝑆𝑘;   𝑟 = 3, 6;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘);
 

𝜎𝑦𝑧(1)
± (𝑥, 𝑡) = ∓𝑝𝑘𝑓3(1)(𝑥, 𝑡) 

−𝐶𝑔6(1)(𝑥, 𝑡) + 𝜎𝑦𝑧(1)
0± (𝑥, 𝑡),     

𝜎𝑥𝑧(1)
± (𝑥, 𝑡) = ∓𝐶𝑓6(1)(𝑥, 𝑡) + 𝑝𝑘𝑔3(1)(𝑥, 𝑡) 

+𝜎𝑥𝑧(1)
0± (𝑥, 𝑡), (𝑥 ∈ 𝐿′). 

(10) 

Consider the next step of loading. Assume that the compo-

nents of SSS of the medium obtained at the end time 𝑡(1) of the 

previous (first) step can be considered as residual ones. 
Then one can assume that the problem statement at this step 

differs from the formulation of the problem of the previous step 
in already existing displacement and stress discontinuities caused 
by the previous step of loading. Hence, at this step additional 
change in loading is accompanied with additional discontinuities 
and the representation of a total stress field, which account for the 
residual SSS from the previous (𝑝 = 1) step, is as follows: 

𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡) = 𝜎𝑦𝑧(1)(𝑧, 𝑡(1)) 

+𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡(1)) + 𝜎𝑦𝑧(2)
0 (𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(2)

0 (𝑧, 𝑡) 

+𝑖𝑝𝑘𝑔3(2)(𝑧, 𝑡) − 𝐶𝑔6(2)(𝑧, 𝑡), 

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘). 

 (11) 

The total stress should satisfy the boundary conditions (3) at 

𝛾𝑛
(2)

 with the account of a loading direction. Then one can formu-
late the following local problem for the second step: 

𝜎𝑦𝑧(2)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(2)(𝑧, 𝑡) = {𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡)} 

−{𝜎𝑦𝑧(1)(𝑧, 𝑡(1)) + 𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡(1))} 

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘) 

     (12) 

with boundary conditions 

𝜎𝑦𝑧(2)
± (𝑥, 𝑡) = −sgn([𝑤](2))𝜏𝑦𝑧

max − 𝜎𝑦𝑧(1)
± (𝑥, 𝑡(1)), 

𝑥 ∈ 𝛾𝑛
(2)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁). 
(13) 

Conditions (13) can be specified depending on a relation be-

tween 𝛾𝑛
(2)

 and 𝛾𝑛
(1)

: 

𝜎𝑦𝑧(2)
± (𝑥, 𝑡)

= {
−sgn([𝑤](2))𝜏𝑦𝑧

max + sgn([𝑤](1))𝜏𝑦𝑧
max,     𝑥 ∈ 𝛾𝑛

(2 )
⊂ 𝛾𝑛

(1 )

−sgn([𝑤](2))𝜏𝑦𝑧
max − 𝜎𝑦𝑧(1)

± (𝑥, 𝑡(1)),    𝑥 ∈ 𝛾𝑛
(2 )

\𝛾𝑛
(1 )

.
 

According to Eq (14), the abovementioned assumption does 
not demand the proof in a case, when at a following step the sign 
of applied (local at this step) loading changes. As soon as at the 

moment 𝑡(1) of the first step end the local loadings reach their 

extreme values (at their increase those are maxima), a slippage 
zone is fixed in size, and contact surfaces stick together and the 
reached SSS is further considered as residual one. After that, with 
the beginning of a following step the magnitudes of total loadings 
start to decrease and quite similar to the process of unloading of 
the plastic material, new slippage does not arise, while at certain 

time 𝑡(2)
𝑠𝑡 (𝑡(1) < 𝑡(2)

𝑠𝑡 ≤ 𝑡(2)) the slippage conditions (3) are to 

be satisfied. Thus, the starting size of a slippage zone at the 
second step is always less than its size in the end of the previous 

step: 𝛾𝑛
(2)

(𝑡(2)
𝑠𝑡 ) ⊂ 𝛾𝑛

(1)
(𝑡(1)). Therefore, using for this case of 

loading the reasoning similar to that of the previous step one can 
obtain the following resulting SSIE 

{

𝑓3(2)(𝑥, 𝑡) = 0,   

𝑔6(2)(𝑥, 𝑡) =
1

2𝐶
{⟨𝜎𝑦𝑧(2)

0 (𝑥, 𝑡)⟩+2𝜏𝑦𝑧
max(sgn[𝑤](2) − sgn[𝑤](1))};

 

for determination of local (additional regarding the SSS reached at 

time 𝑡(1)) stress and displacement discontinuities from local (for 

this step) loadings. The obtained solution differs from Eqs (7)–(10) 

only in the influence of additional term −2𝜏𝑦𝑧
maxsgn[𝑤](1) at the 

right hand side of SSIE (15), and of course, the superscript in 
brackets defines the second step. 

Providing similar reasoning for the following steps of alternat-
ing monotonously changing loading one can obtain the local 

problem for the 𝑝-th step: 

𝜎𝑦𝑧(𝑝)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑝)(𝑧, 𝑡) = {𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡)} 

− ∑{𝜎𝑦𝑧(𝑖)(𝑧, 𝑡(𝑖)) + 𝑖𝜎𝑥𝑧(𝑖)(𝑧, 𝑡(𝑖))}

𝑝−1

𝑖=1

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘;  𝑡 > 𝑡(𝑝−1))

 
   (16) 

with boundary conditions: 

𝜎𝑦𝑧(𝑝)
± (𝑥, 𝑡) = −sgn([𝑤](𝑝))𝜏𝑦𝑧

max − 𝜎𝑦𝑧(𝑝−1)
± (𝑥, 𝑡(𝑚)) 

= −𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1)), 

𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁̅̅ ̅̅ ̅), 

    
(17) 

which results in the following SSIE 

{

𝑓3(𝑝)(𝑥, 𝑡) = 0,

𝑔6(𝑝)(𝑥, 𝑡) =
1

2𝐶
{⟨𝜎𝑦𝑧(𝑝)

0 (𝑥, 𝑡)⟩+2𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))};

 

and its solution has the same structure as in Eqs (7)–(10).  
In general the local displacement discontinuity and energy 

dissipation at the 𝑝-th step are defined as: 

[𝑤](𝑝)(𝑥, 𝑡) = ∫ 𝑓6(𝑝)(𝑠, 𝑡)𝑑𝑠,     

𝑥

𝑎𝑛(𝑝)
−

 

𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′n, (𝑛 = 1, 𝑁̅̅ ̅̅ ̅), 

      
(19) 

𝑊(𝑝)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](𝑝)(𝑥, 𝑡)|
𝐿′

𝑑𝑥. (20) 

As a consequence, total values of stress, strain, displacement 

and its discontinuity, the dissipated energy etc. after the 𝑝-th step 
can be presented as a superposition, for instance 

[𝑤](𝑥, 𝑡) = ∑ [𝑤](𝑚)(𝑥, 𝑡(𝑚))
𝑝−1
𝑚=1  + [𝑤](𝑝)(𝑥, 𝑡)   

(𝑥 ∈ 𝐿′;    𝑡 > 𝑡(𝑝−1))
,        (21) 

𝑊𝑑(𝑡) = ∑ 𝑊(𝑚)
𝑑 (𝑡(𝑚))

𝑝−1
𝑚=1  + 𝑊(𝑝)

𝑑 (𝑡), (𝑡 > 𝑡(𝑝−1)).(22) 

As well as in Sulym et al. (2015), for detailed illustration of the 
developed approach for solution of the problem consider a special 
case of alternating loading symmetric concerning a vertical axis 
(𝑧∗𝑘 = ±𝑖𝑑) of a medium containing a single (𝑁 = 1) crack 

𝐿′1 = [−𝑏;   𝑏]. Then in the bounds of 𝐿′1 at each loading step 

only a symmetric slippage zone 𝛾1
(𝑝)

= [−𝑎(𝑝);   𝑎(𝑝)](𝑎(𝑝) ≤

𝑏) can occur and 

⟨𝜎𝑦𝑧(𝑝)
0 (𝑥, 𝑡)⟩ = 2𝜏(𝑝)(𝑡) − 4𝑝1Im𝐷2(𝑝)(𝑥, 𝑡) −

4𝑝2Im𝐷1(𝑝)(𝑥, 𝑡),                𝑄0(𝑥) ≡ 𝑐0 = 0. 
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In this case the solution of the integral equation (18) after calculation of corresponding integrals is as follows: 

𝑓6(𝑝)(𝑥, 𝑡) =
1

𝜋𝐶√𝑎(𝑝)
2 −𝑥2

{𝜋(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))) 𝑥 +

+ ∑ 𝑝2−𝑘 (𝑄𝑘(𝑝)(𝑡)Im
√𝑧∗𝑘

2−𝑎(𝑝)
2

𝑥−𝑧∗𝑘
+2

𝑘=1 𝐺𝑘𝑏𝑘(𝑝)(𝑡)Re (
√𝑧∗𝑘

2−𝑎(𝑝)
2

𝑥−𝑧∗𝑘
+ 1))},               (𝑥 ∈ [−𝑎(𝑝);   𝑎(𝑝)]).

   (23) 

The function 𝑋(𝑧) = √𝑧2 − 𝑎2 is understand as a branch, satisfying the condition √𝑧2 − 𝑎2 𝑧⁄ → 1 as 𝑧 → ∞. Similar reasoning is 

used for a choice of branches of functions √𝑧∗𝑘
2 − 𝑎2and √𝑧∗̅𝑘

2 − 𝑎2, 𝑘 = 1, 2. 

Based on Eq (23) one can obtain the following formula for 𝑔6(𝑝)(𝑧, 𝑡): 

𝑔6(𝑝)(𝑧, 𝑡) =
1

𝐶
[𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) −(sgn[𝑤](𝑝−1))] (1 −
𝑧

√𝑧2−𝑎(𝑝)
2

) −
𝑝1𝐺2𝑏2(𝑝)(𝑡)+𝑝2𝐺1𝑏1(𝑝)(𝑡)

𝜋𝐶√𝑧2−𝑎(𝑝)
2

−
1

2𝜋𝐶
∑ 𝑝2−𝑘 (𝑖𝑄𝑘(𝑝)(𝑡)𝑅𝑘

−(𝑎(𝑝), 𝑧, 𝑧∗𝑘) − (𝐺𝑘𝑏𝑘(𝑝)(𝑡)𝑅𝑘
+(𝑎(𝑝), 𝑧, 𝑧∗𝑘))),     2

𝑘=1 (𝑧 ∉ [−𝑎(𝑝);   𝑎(𝑝)]),

                 (24) 

where: 

𝑅𝑘
±(𝑎, 𝑧, 𝑧∗𝑘) =

1

𝜋
∫ (

√𝑧∗𝑘
2 − 𝑎2

𝑥 − 𝑧∗𝑘

±
√𝑧∗̅𝑘

2 − 𝑎2

𝑥 − 𝑧∗̅𝑘

)

𝑎

−𝑎

𝑑𝑥

√𝑎2 − 𝑥2(𝑥 − 𝑧)
=

1

√𝑧2 − 𝑎2
(

√𝑧∗𝑘
2 − 𝑎2

𝑧∗𝑘 − 𝑧
±

√𝑧∗̅𝑘
2 − 𝑎2

𝑧∗̅𝑘 − 𝑧
) − (

1

𝑧∗𝑘 − 𝑧
±

1

𝑧∗̅𝑘 − 𝑧
) .

 

Expression for displacement discontinuity [𝑤](𝑝) can be obtained from Eqs (19), (23) as 

[𝑤](𝑝)(𝑥, 𝑡) = ∫ 𝑓6(𝑝)(𝑠, 𝑡)𝑑𝑠
𝑥

−𝑎(𝑝)
= −

1

𝐶
(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))) √𝑎 (𝑝)
2 − 𝑥2 +

+
1

𝜋𝐶
{∑ 𝑝2−𝑘

2
𝑘=1 (𝑄𝑘(𝑝)(𝑡)Im𝐼(𝑥, 𝑧∗𝑘) + 𝐺𝑘𝑏𝑘(𝑝)(𝑡) (𝜋 + 2arcsin

𝑥

𝑎(𝑝)
+ Re𝐼(𝑥, 𝑎(𝑝), 𝑧∗𝑘)),    (|𝑥| ≤ 𝑎(𝑝)),

   (25) 

where: 𝐼(𝑥, 𝑎, 𝑧) ≡ √𝑧2 − 𝑎2 ∫
𝑑𝑥

√𝑎2−𝑡2(𝑥−𝑧)

𝑥

−𝑎
= 𝑖ln

𝑎(𝑧−𝑥)

𝑎2−𝑥𝑧−𝑖√𝑎2−𝑥2√𝑧2−𝑎2
. 

From Eqs (20), (25) it follows the expression for energy dissipation 𝑊(𝑝)
𝑑 (𝑡): 

𝑊(𝑝)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](𝑝)(𝑥, 𝑡)|
𝑎(𝑝)

−𝑎(𝑝)
𝑑𝑥 = −

𝜏𝑦𝑧
max

𝐶
|

𝜋𝑎(𝑝)
2

2
(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) −

      − sgn[𝑤](𝑝−1))) + ∑ 𝑝2−𝑘(𝑄𝑘(𝑝)(𝑡))2
𝑘=1 Im (√𝑧∗𝑘

2 − 𝑎(𝑝)
2 − 𝑧∗𝑘) +𝐺𝑘𝑏𝑘(𝑝)(𝑡)Re (√𝑧∗𝑘

2 − 𝑎(𝑝)
2 − 𝑧∗𝑘)| .

  (26) 

Consider in details the determination of the size 𝑎(𝑝) of the slippage zone at each step of loading. Here SIF is the defining parameter, 

which is determined within Eq (22) of Sulym and Piskozub (2004) as: 

𝐾3(𝑝)(𝑡) =
1

√𝜋𝑎(𝑝)

∫ √
𝑎(𝑝) ± 𝑥

𝑎(𝑝) ∓ 𝑥
𝜎𝑦𝑧(𝑥, 𝑡)

𝑎(𝑝)

−𝑎(𝑝)

𝑑𝑥 =
=

1

√𝜋𝑎(𝑝)

∫ √
𝑎(𝑝) ± 𝑥

𝑎(𝑝) ∓ 𝑥
{ ∑ 𝜎𝑦𝑧(𝑚)(𝑥, 𝑡(𝑚))

𝑝−1

𝑚=1

+ 𝜎𝑦𝑧(𝑝)
0 (𝑥, 𝑡) + sgn[𝑤](𝑝)𝜏𝑦𝑧

max}

𝑎(𝑝)

−𝑎(𝑝)

𝑑𝑥 

= √𝜋𝑎(𝑝)(∑ 𝜏(𝑚)(𝑡(𝑚))
𝑝−1
𝑚=1 + 𝜏(𝑝)(𝑡) + sgn[𝑤](𝑝)𝜏𝑦𝑧

max) −
1

√𝜋𝑎(𝑝)
∑ 𝑝2−𝑘 {(∑ 𝑄𝑘(𝑚)(𝑡(𝑚)) +

𝑝−1
𝑚=1 𝑄𝑘(𝑝)(𝑡))Im

𝑎(𝑝)±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎(𝑝)

2
+2

𝑘=1

+ (∑ 𝑏𝑘(𝑚)(𝑡(𝑚))
𝑝−1
𝑚=1 + 𝑏𝑘(𝑝)(𝑡))𝐺𝑘Re (

𝑎(𝑝)±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎(𝑝)

2
∓ 1)} .

 (27) 

The equality of SIF to zero provides the condition for slippage 

start at the 𝑝-th step, the magnitude of the first critical loading 
𝑄𝑘(𝑝)

∗ , and the size 𝑎(𝑝) of the slippage. 

For definiteness it is assumed (other cases are studied simi-

larly) that at the point 𝑧∗2 = 𝑖𝑑 of the top half-space only one 
alternating monotonously changing concentrated force with mag-

nitude 𝑄2(𝑡) = ∑ 𝑄2(𝑚)(𝑡)𝑚  is applied, which increase at odd 

and decrease at even 𝑚. SIF magnitude, the size of a slippage 
zone, displacement discontinuity and energy dissipation at the first 
step of such loading are studied in Ref [17]. Consider the second 

step (unloading), when 𝑄2(2)(𝑡) < 0  (𝑡 > 𝑡(1)). Accounting for 

the fact that sgn[𝑤](2) = 1 at this step, from expression (27) 

one can obtain the size of new slippage zone 

𝑎(2)(𝑡) = √
𝑝1

2𝑄2(2)(𝑡)2

4𝜋2𝜏𝑦𝑧
max2 − 𝑑2,         (28) 

and a condition at unloading, when the slippage starts over again 

|𝑄2(2)(𝑡)| ≥
2𝜋𝑑𝜏𝑦𝑧

max

𝑝1
= 𝑄2(2)

∗ = 2𝑄2(1)
∗ .        (29) 

Here the first critical value of the applied force at the 𝑝-th step 

is denoted as 𝑄2(𝑝)
∗ . Local displacement discontinuity and the 

energy dissipation at the second step for such loading (while the 
condition (29) holds) is as follows 
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[𝑤](2)(𝑥, 𝑡) = ∫ 𝑓6(2)(𝑥, 𝑡)𝑑𝑥
𝑥

−𝑎(2)
=

𝑝1𝑄2(2)(𝑡)

2𝜋𝐶
ln

√𝑎(2)
2 +𝑑2−√𝑎(2)

2 −𝑥2

√𝑎(2)
2 +𝑑2+√𝑎(2)

2 −𝑥2
−

2

𝐶
𝜏𝑦𝑧

max√𝑎(2)
2 − 𝑥2(|𝑥| ≤ 𝑎(2));        (30) 

𝑊(2)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](2)(𝑥, 𝑡)|
𝑎(2)

−𝑎(2)
𝑑𝑥 =

𝜋𝑎(2)
2 𝜏𝑦𝑧

max2

2𝐶
−

𝜏𝑦𝑧
max

𝐶
𝑝1𝑄2(2)(𝑡) (√𝑎(2)

2 + 𝑑2 − 𝑑).    (31) 

Assuming that 𝑎 = 𝑏 in (29) one can obtain the second criti-
cal force, at which nonzero SIF (singular stress) arise at the vicini-
ty of crack tips 

𝑄2(2)
∗∗ =

2𝜋𝜏𝑦𝑧
max

𝑝1
√𝑑2 + 𝑏2 = 2𝑄2(2)

∗ √𝑑2+𝑏2

𝑑
. 

Continuing similar reasoning for the following steps of load-
ings one can find that both critical loadings of the second and 
following steps is higher twice than corresponding critical loadings 
of the initial step. 

For smooth contact between crack faces (zero friction coeffi-

cient) one should assume 𝜏𝑦𝑧
max = 0 in the abovementioned 

equations. This special case coincides with the solution of the 
antiplane problem for an interfacial crack under the identical static 
loading in Panasyuk et al. (1976) and in Sulym (2007). 

Let's prove that the proposed additive approach of the ac-
count of repeating loading is suitable and for the case when at the 
following step the applied loading does not change its sign. As at 

time 𝑡(1) the first step loading reaches maximum, and then con-

tinues to increase already at the second step, the slippage zon 
after the first step continues to grow without a delay to a maximum 

𝛾𝑛
(2)

(𝑡) ⊃ 𝛾𝑛
(1)

(𝑡(1))  (𝑡(2)
𝑠𝑡 = 𝑡(1)) of the second. Hence, if the 

total solution after the second step obtained by means of Eqs 
(23)–(28) coincides with the solution of this problem in a single 
step, but the medium is then subjected to the total loading of two 
steps. Thus, the proposed technique can be used for the arbitrary 
quasi-static multistage loading. Let’s show this on the abovemen-
tioned example for the two first steps of action of symmetric load-

ing with the regard to the vertical axis (𝑧∗𝑘 = ±𝑖𝑑) of a medium 
with a single (𝑁 = 1) crack. For simplification of calculations we 

will assume that only one concentrated force 𝑄2(𝑝)(𝑡) acts in the 

medium. Since 𝑎(2)(𝑡) ≥ 𝑎(1)(𝑡(1)) for 𝑡 ≥ 𝑡(1), in this case 

one should account for the second part of the boundary conditions 
(14), which contains the following terms: 

𝜎𝑦𝑧(1)
± (𝑥, 𝑡(1)) = 𝜎𝑦𝑧(1)

0± (𝑥, 𝑡(1)) − 𝐶𝑔6(1)(𝑥, 𝑡(1)) = 𝜎𝑦𝑧(1)
0± (𝑥, 𝑡(1)) −

𝐶

𝜋
∫

𝑓6(1)(𝜉,𝑡(1))𝑑𝜉

𝜉−𝑥

𝑎(1)

−𝑎(1)
,   

𝑥 ⊂ [−𝑎(2); 𝑎(2)]\[−𝑎(1); 𝑎(1)].

    (32) 

Calculating 𝐾3(2)(𝑡) at the second step one obtains 

𝐾3(2)(𝑡) =
1

√𝜋𝑎(2)

∫ √
𝑎(2) ± 𝑥

𝑎(2) ∓ 𝑥
{𝜎𝑦𝑧(1)(𝑥, 𝑡(1)) + 𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max}

𝑎(2)

−𝑎(2)

𝑑𝑥 = 

=
1

√𝜋𝑎(2)

∫ √
𝑎(2) ± 𝑥

𝑎(2) ∓ 𝑥
(𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max + {

−sgn[𝑤](1)𝜏𝑦𝑧
max,       𝑥 ∈ 𝛾1

(2)
⊂ 𝛾1

(1)

𝜎𝑦𝑧(1)
0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)),       𝑥 ∈ 𝛾1

(2)
\𝛾1

(1)) 𝑑𝑥 =

𝑎(2)

−𝑎(2)

 

=
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max)

𝑎(2)

−𝑎(2)
𝑑𝑥 −

sgn[𝑤](1)𝜏𝑦𝑧
max

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥

𝑎(1)

−𝑎(1)
𝑑𝑥 +

+
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(1)

0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)))
−𝑎(1)

−𝑎(2)
𝑑𝑥 +

+
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(1)

0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)))
𝑎(2)

𝑎(1)
𝑑𝑥.

    (33) 

Accounting for sgn[𝑤](2) = sgn[𝑤](1) = −1 in the considered case, and utilizing the values of integrals 

1

𝜋
∫

𝜉𝑑𝜉

√𝑎2 − 𝜉2(𝜉 − 𝑥)

𝑎

−𝑎

= 1 −
|𝑥|

√𝑥2 − 𝑎2
,

1

𝜋
∫

𝑑𝜉

√𝑎2 − 𝜉2(𝜉 − 𝑥)(𝜉 − 𝑧)

𝑎

−𝑎

=
1

𝑧 − 𝑥
(−

1

√𝑧2 − 𝑎2
+

sgn(𝑥)

√𝑥2 − 𝑎2
) 𝑥 ∉ [−𝑎; 𝑎],

 

∫ √
𝑏±𝜉

𝑏∓𝜉
𝑑𝜉

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉
𝑑𝜉

𝑏

𝑎
= 2𝑏 (

𝜋

2
− arcsin

𝑎

𝑏
),                  ∫ √

𝑏±𝜉

𝑏∓𝜉

|𝜉|𝑑𝜉

√𝜉2−𝑎2

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉

|𝜉|𝑑𝜉

√𝜉2−𝑎2

𝑏

𝑎
= 𝑏𝜋,

∫ √
𝑏±𝜉

𝑏∓𝜉

sgn(𝜉)𝑑𝜉

(𝜉−𝑖𝑑)√𝜉2−𝑎2

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉

sgn(𝜉)𝑑𝜉

(𝜉−𝑖𝑑)√𝜉2−𝑎2

𝑏

𝑎
=

𝜋(𝑏±𝑖𝑑)

√𝑎2+𝑑2√𝑏2+𝑑2
,

   (34) 

one obtains SIF as: 

𝐾3(2)(𝑡) = √𝜋𝑎(2)(𝜏(1)(𝑡(1)) + 𝜏(2)(𝑡) − 𝜏𝑦𝑧
max) − √

𝑎(2)

𝜋

𝑝1(𝑄2(1)(𝑡(1))+𝑄2(2)(𝑡))

√𝑎(2)
2 +𝑑2

,      (35) 
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which coincides with the sum of expressions (25) and (26) of 
Sulym et al. (2015) for the case of a single-step loading equal to 

𝜏(1)(𝑡(1)) + 𝜏(2)(𝑡) and 𝑄2(1)(𝑡(1)) + 𝑄2(2)(𝑡). 

Thus, the proposed additive approach to the sequence of re-
sidual SSS is suitable for the account of multistage loading-
unloading. However, for simplification of the solution procedure it 
is expediently to unite the consecutive steps of additional loading 
or unloading in one single step. In this case, the solution of the 
problem formulated in section 1 can be easily obtained by means 
of the above-stated technique for alternating loading. 

4. THE NUMERICAL ANALYSIS 

Consider the following dimensionless values, which signifi-
cantly reduce the amount of calculations without loss in generality: 

𝑎(𝑝)/𝑏, 𝑥/𝑏, 𝑑/𝑏 are the slippage zone, co-ordinate 𝑥 

and distance to the concentrated force application point, respec-
tively, normalized to the semi-length of a crack at the 𝑝-th step; 

𝛽(𝑝) = 𝑄(𝑝)(𝑡)/𝑄(1)
∗  is a normalized magnitude of the applied 

force at the 𝑝-th step; 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄ , 

𝐶𝑊(𝑝)(𝑥, 𝑡) 𝜋𝛼2𝑏2𝑃2⁄  are normalized displacement discontinu-

ity and the energy dissipation at the 𝑝-th step. 

 
Fig. 2. Dependence of the size of a slippage zone  
            on the loading parameters at the 𝑝-th step 

 
Fig. 3. Hysteretic behavior of displacement discontinuity  
           in a full cycle of loading 

Fig. 2 plots the dependence of the size 𝑎(𝑝)/𝑏 of a slippage 

zone at the 𝑝-th step on the dimensionless magnitude 𝛽(𝑝) =

𝑄(𝑝)(𝑡)/𝑄(1)
∗  of the applied force.  

It should be notices that for 𝛽(𝑝)  ≤ 1 the slippage is always 

absent, and for 1 ≤ 𝛽(𝑝) ≤ 2  it occurs only at the first (initial) 

step of a cycle. The slippage zone at a step grows monotonously 
with increase in the magnitude of loading, not exceeding the size 
of a crack. 

Fig. 3 illustrates the hysteretic behaviour of the total displace-

ment discontinuity 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄  at various points 

𝑥/𝑏 of the slippage zone depending on the magnitude of loading 

in the alternating cycle 4𝑄(1)
∗ → −4𝑄(1)

∗ → 4𝑄(1)
∗ → −4𝑄(1)

∗ →

. ... Here it is well observed that such character of change is inher-
ent to displacement discontinuities not only at the centre of slip-
page zone, but also to all of its points. Continuous lines corre-
spond to a range of change of loading between the first and the 
second critical values, when the slippage zone has not reached 
crack tips yet. The dot line denote displacement discontinuities for 
loading exceeding the second critical force, when at the vicinity of 
crack tips stress singularity arise. 

Change in the form of both local and total displacement dis-

continuities 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄  in the zero-base cycle 

10𝑄(1)
∗ → 0 → 10𝑄(1)

∗ → 0 →. .. in its dependence on 𝑥/𝑏 is 

plotted in Fig. 4. It is well-noted that after a full cycle of change of 
loading crack edges do not come back into their initial positions, 
thus keeping some residual displacement discontinuity, which 
increase together with a friction coefficient. For 𝑄(𝑝)(𝑡)/𝑄(1)

∗ ≤

2 the slippage at the second and subsequent steps does not 
occur. 

 
Fig. 4. Dependence of the form of displacement discontinuity  
            on the magnitude of loading at the 𝑝-th step 

Fig. 5 illustrates the dependence of the form of displacement 

discontinuity on the relative remoteness 𝑑/𝑏 of the force applica-

tion point in the zero-base cycle 4𝑄(1)
∗ → 0 → 4𝑄(1)

∗ → 0 →. ... 

The increase in 𝑑/𝑏 decreases the range of 𝑄(𝑝)
∗∗ /𝑄(𝑝)

∗ =

√𝑑2 + 𝑏2/𝑑 and accordingly, the sensitivity of [𝑤](𝑝)(𝑥, 𝑡) to 

this parameter. 
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Fig. 5. Dependence of the form of displacement discontinuity on the  
           relative remoteness of the force application point at the 𝑝-th step 

 
Fig. 6. Dependence of energy dissipation on relative remoteness  
           of the force application point at the 𝑝-th step 

Energy dispersion 𝐶𝑊(𝑝)
𝑑 (𝑡) 𝜋𝛼2𝑏2𝑃2⁄  at the 𝑝-th step of 

the alternating cycle 4𝑄(1)
∗ → −4𝑄(1)

∗ → 4𝑄(1)
∗ → −4𝑄(1)

∗ →. .. 

depending on the relative remoteness 𝑑/𝑏 of the force application 
point is plotted in Fig. 6. Continuous lines correspond to a range 
of change of loading between the first and the second critical 

values, when the slippage zone has not reached crack tips yet. 
The dot line denote displacement discontinuities for loading ex-
ceeding the second critical force, when at the vicinity of crack tips 
stress singularity arise. Total energy dissipation at time 𝑡 can be 
obtained using Eq (22). 

Thus one can conclude that the parameter 𝐺1/𝐺2characteriz-
ing the difference of mechanical properties of half-spaces’ materi-
als is negligible in the resulted calculations due to a choice of 
dimensionless quantities of the problem. 
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