PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance comparison of harmonic filters in an industrial power system for harmonic distortion reduction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie wydajności filtrów harmonicznych w przemysłowym systemie zasilania w celu redukcji zniekształceń harmonicznych
Języki publikacji
EN
Abstrakty
EN
The paper presents performance comparison of harmonic filters for the reduction of harmonic distortion in an industrial power system, i.e., National Tobacco Enterprise, an industry found in Ethiopia. The performance comparison is done for single tuned, double tuned, high pass and Ctype harmonic filter. As a result, the double tuned harmonic filter provides a better performance than the other type of filters by giving a reduced Total Harmonic Distortion for the voltage and current waveforms. MATLAB/SIMULINK simulation results are presented for validating the analysis.
PL
W artykule przedstawiono porównanie wydajności filtrów harmonicznych do redukcji zniekształceń harmonicznych w przemysłowym systemie elektroenergetycznym, tj. National Tobacco Enterprise, przemysł znajdujący się w Etiopii. Porównanie wydajności jest dokonywane dla pojedynczego strojonego, podwójnie strojonego, górnoprzepustowego i typu C filtra harmonicznego. W rezultacie podwójnie dostrojony filtr harmonicznych zapewnia lepszą wydajność niż inne typy filtrów, zapewniając zmniejszone całkowite zniekształcenie harmoniczne dla przebiegów napięcia i prądu. Przedstawiono wyniki symulacji MATLAB/SIMULINK w celu weryfikacji analizy.
Rocznik
Strony
50--53
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Electrical & Computer Engineering, Institute of Technology, University of Gondar, Gondar, Ethiopia
  • Electrical & Computer Engineering, Institute of Technology, University of Gondar, Gondar, Ethiopia
  • Electrical & Computer Engineering, Institute of Technology, University of Gondar, Gondar, Ethiopia
  • Industrial Engineering, Institute of Technology, University of Gondar, Ethiopia
Bibliografia
  • [1] IEEE, IEEE 1159 1995 Recommended practice for monitoriong electric power quality. 1995.
  • [2] W. Are et al., ‘Electrical Power Systems Quality , Second Edition’.
  • [3] M. S. Almutairi and S. Hadjiloucas, ‘Harmonics Mitigation Based on the Minimization of Non-Linearity Current in a Power System’, 2019.
  • [4] A. Bagheri and M. Alizadeh, ‘Designing a Passive Filter for Reducing Harmonic Distortion in the Hybrid Micro-grid Including Wind Turbine , Solar Cell and Nonlinear Load’, no. 12, pp. 10–13, 2019.
  • [5] Y. Cho, H. Cha, Y. Cho, and H. Cha, ‘Single-tuned Passive Harmonic Filter Design Considering Variances of Tuning and Quality Factor Single-tuned Passive Harmonic Filter Design Considering Variances of Tuning and Quality Factor’, vol. 8972, 2014.
  • [6] R. Dua and A. Agrawal, ‘Impact Of Single Tuned Filter on Grid Connected PV System’, vol. 08, no. 06, pp. 213–217, 2019.
  • [7] M. Awadalla, M. Orner, and A. Mohamed, ‘Single-tuned filter design for harmonic mitigation and optimization with capacitor banks Single-tuned Filter Design for Harmonic Mitigation and Optimization with Capacitor Banks’, no. September 2015, 2019.
  • [8] I.O.P.C.SeriesandM.Science,‘Harmonicreductionbyusing single-tuned passive filter in plastic processing industry Harmonic reduction by using single-tuned passive filter in plastic processing industry’, 2018.
  • [9] Y. K. Haur, T. J. Son, L. K. Yun, W. Jee, and K. Raymond, ‘Design of Single-Tuned Passive Harmonic Filter to Meet Ieee- 519 Standard By Means of Quality-Factor Manipulations’, vol. 29, no. 1, pp. 1364–1379, 2020.
  • [10 ]K. R. Cheepati, S. Ali, and A. Rangampet, ‘Overview of Double Tuned Harmonic Filters in Improving Power Quality under Non Linear Load Conditions’, vol. 10, no. 7, pp. 11–26, 2017.
  • [11] H. E. Yi-hong and S. U. Heng, ‘A New Method of Designing Double-tuned Filter’, no. Iccsee, pp. 206–209, 2013.
  • [12] K. R. Cheepati, S. Ali, and S. K. M, ‘Performance Analysis of Double Tuned Passive Filter for Power Quality’, vol. 9, no. 7, pp. 3295–3305, 2016.
  • [13] P. Control and G. Mishra, ‘Design of Passive High Pass Filter for Hybrid Active Power Filter Applications Department of Electrical Engineering National Institute of Technology Design of Passive High Pass Filter for Hybrid Active Power Filter Applications’.
  • [14] B. Park, J. Lee, H. Yoo, and G. Jang, ‘Harmonic Mitigation Using Passive Harmonic Filters : Case Study in a Steel Mill Power System’, 2021.
  • [15] Z. A. Memon, M. A. Uqaili, and M. A. Unar, ‘Harmonics Mitigation of Industrial Power System Using Passive Filters’, no. July, 2016.
  • [16] I. A. Shah and R. K. Ali, ‘Design of a C-type Passive Filter for Reducing Harmonic Distortion and Reactive Power Compensation’, vol. 4, no. 12, pp. 38–47, 2016.
  • [17] R. Klempka, ‘A New Method for the C-Type Passive Filter Design’, no. 7, pp. 277–281, 2012.
  • [18] A. Furnaces, ‘Selection of C-Type Filters for Reactive Power Compensation and Filtration of Higher Harmonics’, 2020.
  • [19] A. Muchtar and W. M. Muttaqin, ‘Comparison between single tuned filter and c-type filter performance on the electric power distribution network Comparison between single tuned filter and c-type filter performance on the electric power distribution network’, 2019.
  • [20] S. A. Rahman, ‘Direct Converter Based DVR to Mitigate Single Phase Outage’, no. September 2019, 2021.
  • [21] A. Rahman, ‘Mitigation of Voltage Sag , Swell and Outage without Converter’, no. October 2019, 2021.
  • [22] S. A. Rahman, S. B. Mule, E. D. Mitiku, G. T. Aduye, and C. Gopinath, ‘Highest Voltage Sag and Swell Compensation using Single Phase Matrix Converter with Four Controlled Switches’, no. 4, pp. 134–138, 2021.
  • [23] C. Reads, ‘Realization of Single Phase Matrix Converter Using 4 Controlled Switches’, no. October 2019, 2021.
  • [24] S. A. Rahman and G. Teshome, ‘Maximum voltage sag compensation using direct converter by modulating the carrier signal’, vol. 10, no. 4, pp. 3936–3941, 2020.
  • [25] S. A. Rahman and E. Dagnew, ‘Voltage sag compensation using direct converter based DVR by modulating the error signal’, vol. 19, no. 2, pp. 608–616, 2020.
  • [26] S. A. Rahman, E. D. Mitiku, S. B. Mule, G. T. Aduye, M. A. Huluka, and S. Mesfin, ‘Voltage Sag Mitigation Using Direct Converter Based DVR without Error Signal’, no. 12, pp. 34–37, 2021.
  • [27] S. A. Rahman, S. Birhan, E. D. Mitiku, G. T. Aduye, and P. Somasundaram, ‘A Novel DVR Topology to Compensate Voltage Swell, Sag, and Single-Phase Outage’, vol. 17, no. 4, pp. 1–10, 2021.
  • [28] C. R. C. P. Llc, Power quality © 2002. 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-840357a3-6ec0-487a-b3e9-249aedc75771
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.