PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of nanocellulose by hydrolysis with ionic liquids and two-step hydrolysis with ionic liquids and enzymes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to compare parameters of nanocellulose obtained by two different procedures: hydrolysis with ionic liquids (1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) and hydrolysis with ionic liquids in combination with hydrolysis using a cellulolytic enzyme from Trichoderma reesei. Avicel cellulose was treated with two ionic liquids: 1-allyl-3-methylimidazolium chloride (AmimCl) and 1-ethyl-3-methylimidazolium acetate (EmimOAc). In the two-step hydrolysis cellulose after treatment with ionic liquids was additionally hydrolyzed with a solution of enzymes. In order to characterize the obtained material, the following analyses were used: infrared spectroscopy, X-ray diffraction and dynamic light scattering. The results indicated that cellulose obtained by two-step nanocellulose production methods (first hydrolysis with ionic liquids and then with enzymes) showed similar parameters (particle size, XRD patterns and degree of crystallinity) as the material after the one-step process, i.e. hydrolysis with ionic liquids.
PL
Otrzymywanie nanocelulozy poprzez hydrolizę cieczami jonowymi oraz hydrolizę dwuetapową cieczami jonowymi i enzymami. Celem pracy było porównanie parametrów nanocelulozy otrzymanej dwoma różnymi metodami: na drodze hydrolizy cieczami jonowymi (chlorek 1-allilo-3-metyloimidazoliowy i octan 1-etylo-3-metyloimidazoliowy) z hydrolizą cieczami jonowymi w połączeniu z hydrolizą enzymatyczną, przy użyciu enzymów celulolitycznych z Trichoderma reesei. Celuloza Avicel została potraktowana dwoma cieczami jonowymi: chlorkiem 1-allilo-3-metyloimidazoliowym (AmimCl) i octanem 1-etylo-3-metyloimidazoliowym (EmimOAc). W hydrolizie dwuetapowej, celuloza po obróbce cieczami jonowymi była dodatkowo poddana hydrolizie roztworem enzymów. W celu scharakteryzowania otrzymanego materiału zastosowano następujące analizy: spektroskopię w podczerwieni, dyfrakcję rentgenowską oraz dynamiczne rozpraszanie światła. Wyniki wykazały, że celuloza otrzymana w wyniku dwuetapowego procesu produkcji nanocelulozy (w pierwszej kolejności hydroliza cieczami jonowymi, a następnie enzymami) wykazuje podobne parametry (wielkość cząstek, strukturę nadcząsteczkową i stopień krystaliczności) jak materiał po jednoetapowym procesie - hydrolizie cieczami jonowymi.
Słowa kluczowe
Twórcy
  • Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poland
  • Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poland
  • Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poland
  • Institute of Chemical Technology and Engineering, Poznan University of Technology, Poland
  • Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poland
  • Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poland
Bibliografia
  • 1. BABICKA M., WOŹNIAK M., SZENTNER K., BARTKOWIAK M., PEPLIŃSKA B., DWIECKI K., BORYSIAK S., RATAJCZAK I., 2021: Nanocellulose production using ionic liquids with enzymatic pretreatment, Materials, 14, 12, 3264.
  • 2. BRODEUR G., YAU E., BADAL K., COLLIER J., RAMACHANDRAN K.B., RAMAKRISHNAN S., 2011: Chemical and physicochemical pretreatment of lignocellulosic biomass: A review, Enzyme Research 2011.
  • 3. CHARREAU H., CAVALLO E., FORESTI M.L., 2020: Patents involving nanocellulose: Analysis of their evolution since 2010, Carbohydrate Polymers, 237, 116039.
  • 4. CHENG G., VARANASI P., LI C., LIU H., MELNICHENKO Y.B., SIMMONS B.A., KENT M.S., SINGH S., 2011: Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis, Biomacromolecules, 12, 933–941.
  • 5. CLOUGH M.T., GEYEY K., HUNT P.A., SON S., VAGT U., WELTON T., 2014: Ionic liquids: Not always innocent solvents for cellulose, Green Chemistry, 17, 231- 243.
  • 6. DE AGUIAR J., BONDANCIA T.J., CLARO P.I.C., MATTOSO L.H.C., FARINAS C.S., MARCONCINI J.M., 2020: Enzymatic deconstruction of 12 sugarcane bagasse and straw to obtain cellulose nanomaterials, ACS Sustainable Chemistry & Engineering, 8, 2287–2299.
  • 7. DU H., QIAN X., 2011: The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids, Carbohydrate Research, 346, 1985–1990.
  • 8. FRENCH A.D., 2014: Idealized powder diffraction patterns for cellulose polymorphs, Cellulose, 21, 885–896.
  • 9. GEORGE J.,SABAPATHI S.N., 2015: Cellulose nanocrystals: Synthesis, functional properties, and applications, Nanotechnology, Science and Applications, 8, 45–54.
  • 10. GRZĄBKA-ZASADZIŃSKA A., SKRZYPCZAK A., BORYSIAK S., 2019: The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites, Cellulose, 26, 4827–4840.
  • 11. HEISE K., KONTTURI E., ALLAHVERDIYEVA Y., TAMMELIN T., LINDER M.B., NONAPPA, IKKALA O., 2021: Nanocellulose: Recent fundamental advances and emerging biological and biomimicking applications, Advanced Materials, 33.
  • 12. KALIA S., DUFRESNE A., CHERIAN B.M., KAITH B.S., AVÉROUS L., NJUGUNA J., NASSIOPOULOS E., 2011: Cellulose-based bio- and nanocomposites: A review, International Journal of Polymer Science, 2011.
  • 13. KARIMIAN A., PARSIAN H., MAJIDINIA M., RAHIMI M., MIR S.M., SAMADI KAFIL H., SHAFIEI-IRANNEJAD V., KHEYROLLAH M., OSTADI H., YOUSEFI B., 2019: Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems, International of Biological Macromolecules, 133, 850–859.
  • 14. LEE H.V., HAMID S.B.A., ZAIN S.K., 2014: Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process, The Scientific World Journal, 2014.
  • 15. MAN Z., MUHAMMAD N., SARWONO A., BUSTAM M.A., KUMAR M.V., RAFIQ S., 2011: Preparation of cellulose nanocrystals using an ionic liquid, Journal of Polymers and the Environment, 19, 726–731.
  • 16. MAO J., ABUSHAMMALA H., HETTEGGER H., ROSENAU T., LABORIE M.P., 2017: Imidazole, a new tunable reagent for producing nanocellulose, part I: Xylan-coated CNCs and CNFs, Polymers, 9, 473.
  • 17. MICHELIN M., GOMES D.G., ROMANÍ A., POLIZELI M., TEIXEIRA J.A., 2020: Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry, Molecules, 25, 3411.
  • 18. MOOHAN J., STEWART S.A., ESPINOSA E., ROSAL A., RODRÍGUEZ A., LARRAÑETA E., DONNELLY R.F., DOMÍNGUEZ-ROBLES J., 2020: Cellulose nanofibers and other biopolymers for biomedical applications. A review, Applied Sciences, 10, 65.
  • 19. NOOR S.M., ANUAR A.N., TAMUNAIDU P., GOTO M., SHAMELI K., HALIM M., 2020: Nanocellulose production from natural and recyclable sources: A review, IOP Conference Series: Earth and Environmental Science, 479.
  • 20. PHANTHONG P., REUBROYCHAROEN P., HAO X., XU G., ABUDULA A., GUAN G., 2018: Nanocellulose: Extraction and application, Carbon Resources Conversion, 1, 32–43.
  • 21. PRUDÊNCIO C., VIEIRA M., VAN DER AUWERAER S., FERRAZ R., 2020: Recycling old antibiotics with ionic liquids, Antibiotics, 9, 578.
  • 22. RIBEIRO R., POHLMANN B.C., CALADO V., BOJORGE N., PEREIRA N., 2019: Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Engineering in Life Sciences, 19, 279–291.
  • 23. SIQUEIRA G.A., DIAS I., ARANTES V., 2019: Exploring the action of endoglucanases on bleached eucalyptus kraft pulp as potential catalyst for isolation of cellulose nanocrystals, International of Biological Macromolecules, 133, 1249– 1259.
  • 24. SZENTNER K., WAŚKIEWICZ A., KAŹMIERCZAK S., WOJCIECHOWICZ T., GOLIŃSKI P., LEWANDOWSKA E., WASIELEWSKI O., 2019: Enzymatic hydrolysis of cellulose using extracts from insects, Carbohydrate Research, 485,107811.
  • 25. TAN X.Y., ABD HAMID S.B., LAI C.W., 2015: Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis, Biomass Bioenergy, 81, 584–591.
  • 26. TIBOLLA H., PELISSARI F.M., MARTINS J.T., LANZONI E.M., VICENTE A.A., MENEGALLI F.C., CUNHA R.L., 2019: Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment, Carbohydrate Polymers, 207, 169–179.
  • 27. TRACHE D., TARCHOUN A.F., DERRADJI M., HAMIDON T.S., MASRUCHIN N., BROSSE N., HUSSIN M.H., 2020: Nanocellulose: From fundamentals to advanced applications, Frontiers in Chemistry, 8.
  • 28. YASSIN M.A., GAD A., GHANEM A.F., ABDEL REHIM M.H., 2019: Green synthesis of cellulose nanofibers using immobilized cellulase, Carbohydrate Polymers, 205, 255–260.
  • 29. ZIELIŃSKA D., SZENTNER K., WAŚKIEWICZ A., BORYSIAK S., 2021: Production of nanocellulose by enzymatic treatment for application in polymer composites, Materials, 14, 2124.
  • 30. ZINGE C., KANDASUBRAMANIAN B., 2020: Nanocellulose based biodegradable polymers, European Polymer Journal, 133, 109758.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84011401-9b42-48ca-b2e3-9ecb294aa3ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.