Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The need for clean water is increasing along with the rising population. Water use in developing countries still relies on surface water, such as groundwater, which is very easily contaminated by the surrounding environment. The coagulation method for water purification is usually used to remove colloidal residues and assist the coagulation flocculation process using aluminum sulfate, which can be harmful to health if used for a long time. The coagulation method utilizing natural coagulants, such as proteins and tannins, is better because it is cost-effective and relatively safer for health if used for a long time. Tests on the tannin and protein content in the natural coagulant, as well as characterization using fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) on the water sediment after the coagulant is added, were conducted. The groundwater sample that did not meet the physical, chemical, and biological criteria was chosen as the water sample. Moringa oleifera seed powder and Acanthus ilicifolius leaves were added to the water sample at doses of 0.025 g/L and 0.05 g/L, respectively, and then allowed to settle for 30 minutes. Subsequently, tests were conducted to determine the optimum pH, COD, BOD, TSS, TDS, and the number of E. coli bacterial colonies was determined. The natural coagulants used were proven to reduce COD by 38%, BOD by 52%, TSS by 78%, and TDS by 62%, and to remove 92% of the total E. coli bacteria. FTIR analysis showed that the natural coagulants used contained -OH and C=O functional groups, indicating the presence of natural coagulant molecules.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
365--380
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Biology Postgraduate Program, Faculty of Mathematic and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia
autor
- Department of Biology, Faculty of Mathematic and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia
autor
- Department of Biology, Faculty of Mathematic and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia
Bibliografia
- 1. Aboulhassan, M. A., Souabi, S., Yaacoubi, A., & Baudu, M. (2016). Coagulation efficacy of a tannin coagulant agent compared to metal salts for paint manufacturing wastewater treatment. Desalination and Water Treatment, 57(41), 19199–19205. https://doi.org/10.1080/19443994.2015.1101016
- 2. Adelodun, B., Ogunshina, M. S., Ajibade, F. O., Abdulkadir, T. S., Bakare, H. O., & Choi, K. S. (2020). Kinetic and prediction modeling studies of organic pollutants removal from municipal wastewater using Moringa oleifera biomass as a coagulant. Water (Switzerland), 12(7), 1–14. https://doi.org/10.3390/w12072052
- 3. Ahmad, A., Abdullah, S. R. S., Hasan, H. A., Othman, A. R., & Ismail, N. I. (2021). Plant-based versus metal-based coagulants in aquaculture wastewater treatment: Effect of mass ratio and settling time. Journal of Water Process Engineering, 43(August), 102269. https://doi.org/10.1016/j.jwpe.2021.102269
- 4. Al Moharbi, S. S., Devi, M. G., Sangeetha, B. M., & Jahan, S. (2020). Studies on the removal of copper ions from industrial effluent by Azadirachta indica powder. Applied Water Science, 10(1), 1–10. https://doi.org/10.1007/s13201-019-1100-z
- 5. Amagloh, F. K., & Benang, A. (2009). Effectiveness of Moringa oleifera seed as coagulant for water purification. African Journal of Agricultural Research, 4(2), 119–123.
- 6. Anisa, R. W. R., Fahruddin, & Taba, P. (2024). Removal of divalent copper ions from aqueous solution using Sorghum bicolor L. stem waste as an effective adsorbent. Journal of Ecological Engineering, 25(5), 165–174. https://doi.org/10.12911/22998993/185771
- 7. Asrafuzzaman, M., Fakhruddin, A. N. M., & Hossain, M. A. (2011). Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiology, 2011, 1–6. https://doi.org/10.5402/2011/632189
- 8. Aysen, Ercumen, Kane, E., Shea, D., Guthrie, E., & Nichols. (2024). Diagnostic screening of private well water using gas chromatography with high resolution mass spectrometry to support well water management. science of the Total Enviroment, 953. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.175945
- 9. Benalia, A., Derbal, K., Amrouci, Z., Baatache, O., Khalfaoui, A., & Pizzi, A. (2024). Application of plant-based coagulants and their mechanisms in water treatment: A review. Journal of Renewable Materials, 12(4), 667–698. https://doi.org/10.32604/jrm
- 10. .2024.048306
- 11. Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301–2324. https://doi.org/10.1016/j.watres.2007.03.012
- 12. Camacho, F. P., Sousa, V. S., Bergamasco, R., & Ribau Teixeira, M. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Chemical Engineering Journal, 313, 226–237. https://doi.org/10.1016/j.cej.2016.12.031
- 13. Chaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industr
- 14. ial Crops and Products, 61, 169–175. https://doi.org/10.1016/j.indcrop.2014.06.056
- 15. Czerkas, K., Olchowik-Grabarek, E., Łomanowska, M., Abdulladjanova, N., & Sękowski, S. (2024). Antibacterial activity of plant polyphenols belonging to the tannins against Streptococcus mutans – potential against dental caries. Molecules, 29(4). https://doi.org/10.3390/molecules29040879
- 16. Das, N., Ojha, N., & Mandal, S. K. (2021). Wastewater treatment using plant-derived bioflocculants: Green chemistry approach for safe environment. Water Science and Technology, 83(8), 1797–1812.https://doi.org/10.2166/wst.2021.100
- 17. Dede, N. rival. (2020). Wellness and healthy magazine. 2(February), 187–192. https://doi.org/10.30604/well.268422022
- 18. Dela Justina, M., Rodrigues Bagnolin Muniz, B., Mattge Bröring, M., Costa, V. J., & Skoronski, E. (2018). Using vegetable tannin and polyaluminium chloride as coagulants for dairy wastewater treatment: A comparative study. Journal of Water Process Engineering, 25(June), 173–181. https://doi.org/10.1016/j.jwpe.2018.08.001
- 19. Dong, Y., Goa, J., Tao, L., Wu, J., Zhu, P., Huan, H., Zheng, H., & Huang, T. (2024). Alinization of groundwater in shale gas extraction area in the Sichuan Basin, China: Implications for water protection in shale regions with well-developed faults. Science of the Total Enviroment, 915. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170065
- 20. Eccles, K. M., Checkley, S., Sjogren, D., Barkema, H. W., & Bertazzon, S. (2017). Lessons learned from the 2013 Calgary flood: Assessing risk of drinking water well contamination. Applied Geography, 80, 78–85. https://doi.org/10.1016/j.apgeog.2017.02.005
- 21. Ferrari, A. M., Marques, R. G., de Souza, R. P., Gimenes, M. L., & Fernandes, N. R. C. (2020). Treatment of wastewater from a gas station by tannin-based coagulant and the sludge characteristics. Desalination and Water Treatment, 203, 112–118. https://doi.org/10.5004/dwt.2020.26230
- 22. Fitriani, N., Supriyanto, A., Jariyah, N. I., Putriadji, R. A. D., Pratama, M. B. P., Jusoh, H. H. W., Ismail, A., & Kurniawan, S. B. (2024). Effects of dosage and stirring speed variations in the use of bittern as a natural coagulant to remove biological oxygen demand, chemical oxygen demand, total suspended solids and dye concentrations from batik industry wastewater. Journal of Ecological Engineering, 25(11), 83–99. https://doi.org/10.12911/22998993/192676
- 23. Gao, Q., Demissie, H., Lu, S., Xu, Z., & Ritigala, T. (2021). Journal of environmental chemical engineering impact of preformed composite coagulants on alleviating colloids and organics-based ultrafiltration membrane fouling: Role of polymer composition and permeate quality. Journal of Environmental Chemical Engineering, 9(4), 105264. https://doi.org/10.1016/j.jece.2021.105264
- 24. Grehs, B. W. N., Lopes, A. R., Moreira, N. F. F., Fernandes, T., Linton, M. A. O., Silva, A. M. T., Manaia, C. M., Carissimi, E., & Nunes, O. C. (2019). Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. Water Research, 166. https://doi.org/10.1016/j.watres.2019.115056
- 25. Gunawan, M. I. F., Prangdimurti, E., & Muhandri, T. (2020). Efforts to eliminate the bitter taste of moringa seed flour (Moringa oleifera) and its application for functional foods. Jurnal Ilmu Pertanian Indonesia, 25(4), 636–643. (In Indonesia) https://doi.org/10.18343/jipi.25.4.636
- 26. Hak, A., Kurniasih, Y., & Hatimah, H. (2019). Effectiveness of using moringa seeds (Moringa oleifera, Lam) as a Coagulant to reduce TDS and TSS levels in laundry waste. Hydrogen: Jurnal Kependidikan Kimia, 6(2), 100. (In Indonesian) https://doi.org/10.33394/hjkk.v6i2.1604
- 27. Hameed, Y. T., Idris, A., Hussain, S. A., Abdullah, N., Man, H. C., & Suja, F. (2018). A tannin–based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process. Journal of Cleaner Production, 182, 198–205. https://doi.org/10.1016/j.jclepro.2018.02.044
- 28. Hamzah, B., Rahmawati, S., Suwena, W. S., Hardani, M. F., & Hardani, R. (2020). Analysis of tannin in sapodilla fruit (Manilkara zapota (l) van royen). Rasayan Journal of Chemistry, 13(4), 2243–2248. https://doi.org/10.31788/RJC.2020.1345753
- 29. Hidayat, S. (2009). Moringa oleifera seeds proteins as water purification agent. Jurnal Online Universitas Jambi, 2, 1–69 (In Indonesia).
- 30. Ibrahim, A., Yaser, A. Z., & Lamaming, J. (2021). Journal of environmental chemical engineering synthesising tannin-based coagulants for water and wastewater application: A review. Journal of Environmental Chemical Engineering, 9(1), 105007. https://doi.org/10.1016/j.jece.2020.105007
- 31. Kacem, N. S., Derdour, R., & Djekoun, A. (2024). Antibacterial Efficacy of Moringa oleifera Seeds for Water Purification. Journal of Ecological Engineering, 25(11), 134–142. https://doi.org/10.12911/22998993/192713
- 32. Kapse, G., & Samadder, S. R. (2021). Moringa oleifera seed defatted press cake based biocoagulant for the treatment of coal beneficiation plant effluent. Journal of Environmental Management, 296(June), 113202. https://doi.org/10.1016/j.jenvman.2021.113202
- 33. Khalid Salem, A., Fadhile Almansoory, A., & Al-Baldawi, I. A. (2023). Potential plant leaves as sustainable green coagulant for turbidity removal. Heliyon, 9(5), e16278. https://doi.org/10.1016/j.heliyon.2023.e16278
- 34. Khan, F. M., Gupta, R., & Sekhri, S. (2021). Superposition learning-based model for prediction of E.coli in groundwater using physico-chemical water quality parameters. Groundwater for Sustainable Development, 13 (March 2020), 100580. https://doi.org/10.1016/j.gsd.2021.100580
- 35. Kristianto, H. (2017). The Potency of Indonesia native plants as natural coagulant: a Mini review. Water Conservation Science and Engineering, 2(2), 51–60. https://doi.org/10.1007/s41101-017-0024-4
- 36. Kumar, V., Othman, N., & Asharuddin, S. (2017). Applications of natural coagulants to treat wastewater – A review. MATEC Web of Conferences, 103, 1–9. https://doi.org/10.1051/matecconf/201710306016
- 37. Latief, M., Meriyanti., Fadhilah, Tarigan, Ayu, Maharani, R., Siregar, D., & Aulia. (2022). Isolasi Senyawa Triterpenoid Ekstrak Etanol Daun Jeruju. Journal of Chemistry, 16(1), 34–44.
- 38. Mailoa, M. N., Mahendradatta, M., Laga, A., & Djide, N. (2013). Tannin extract of guava leaves (Psidium guajava L) variation with concentration organic solvents. International Journal of Scientific & Technology Research, 2(9), 106–110.
- 39. Pichel, N., Hymnô de Souza, F., Sabogal-Paz, L. P., Shah, P. K., Adhikari, N., Pandey, S., Shrestha, B. M., Gaihre, S., Pineda-Marulanda, D. A., Hincapie, M., Luwe, K., Kumwenda, S., Aguilar-Conde, J. C., Cortes, M. A. L. R. M., Hamilton, J. W. J., Byrne, J. A., & Fernandez-Ibañez, P. (2023). Field-testing solutions for drinking water quality monitoring in low- and middle-income regions and case studies from Latin American, African and Asian countries. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111180
- 40. Precious Sibiya, N., Rathilal, S., & Kweinor Tetteh, E. (2021). Coagulation treatment of wastewater: Kinetics and natural coagulant evaluation. Molecules, 26(3). https://doi.org/10.3390/molecules26030698
- 41. Pringgenies, D., Setyati, W. A., Wibowo, D. S., & Djunaedi, A. (2020). Aktivitas antibakteri ekstrak Jeruju Acanthus ilicifolius terhadap bakteri multi drug resistant. Jurnal Kelautan Tropis, 23(2), 145–156. https://doi.org/10.14710/jkt.v23i2.5398
- 42. Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6, 36–50. https://doi.org/10.1016/j.wri.2014.07.001
- 43. Tanjung, R. E., Fahruddin, F., & Samawi, M. F. (2019). Phytoremediation relationship of lead (Pb) by Eichhornia crassipes on pH, BOD and COD in groundwater. Journal of Physics: Conference Series, 1341(2). https://doi.org/10.1088/1742-6596/1341/2/022020
- 44. Tetteh, E. K., & Rathilal, S. (2021). Application of magnetized nanomaterial for textile effluent remediation using response surface methodology. Materials Today: Proceedings, 38, 700–711. https://doi.org/10.1016/j.matpr.2020.03.827
- 45. Thakur, S. S., & Choubey, S. (2014). Use of Tannin based natural coagulants for water treatment: An alternative to inorganic chemicals. International Journal of ChemTech Research, 6(7), 3628–3634.
- 46. Varkey, A. J. (2020). Purification of river water using Moringa oleifera seed and copper for point-of-use household application. Scientific African, 8. https://doi.org/10.1016/j.sciaf.2020.e00364
- 47. Zaidi, N. syamimi, Chin Ting, W., Zhan Loh, Z., Burhanuddin Bahrodin, M., Azimatolakma Awang, N., & Kadier, A. (2022). Assessment and optimization of a natural coagulant (Musa paradisiaca) peels for domestic wastewater treatment. Environmental and Toxicology Management, 2(1), 7–13. https://doi.org/10.33086/etm.v2i1.2901
- 48. Zakaria, N. H., Ibrahim, M. A., Majid, F. A. A., Hashim, F., Johari, S. A. T. T., & Hasali, N. H. M. (2024). Ethnobotany, phytochemistry and pharmacology of Acanthus ilicifolius: A comprehensive review. Malaysian Journal of Medicine and Health Sciences, 20(4), 333–344. https://doi.org/10.47836/mjmhs20.4.41
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84008df1-b3dd-421c-952f-65718944ce91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.