PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The beneficial role of indigenous arbuscular mycorrhizal fungi in phytoremediation of wetland plants and tolerance to metal stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential of fi ve plants namely Atriplex halimus L., A. canescens (Pursh) Nutt., Suaeda fruticosa (Forssk. ex J.F. Gmel.), Marrubium vulgare L. and Dittrichia viscosa (L.) Greuter from two selected wetlands in northwest Algeria subjected to house and industrial effluents were examined to assess their arbuscular mycorrhizal fungal (AMF) diversity and colonization, as well as to determine their tolerance and ability in accumulating metallic trace elements (MTEs). The purpose was to investigate whether, or not, these fungi are related to metallic uptake. Arbuscular mycorrhizal association was observed in all plant species, since the dual association between AMF and dark septate endophytes (DSE) was found in roots of 80% plants species. Hence, the decreasing trend of metal accumulation in most plant organs was Zn>Cu>Pb, and the most efficient species were M. vulgare> S. fruticosa>A. canescens> D. viscosa> A. halimus. The bioaccumulator factors exceeded the critical value (1.0) and the transport factors indicated that all these species were phytoremediators. Pearson correlation showed that Cd bioaccumulation and translocation were inhibited by AMF infection; meanwhile Zn, Pb and Cd accumulation were affected by AMF spore density and species richness, DSE frequency, pH, AMF and plant host. Native halophytes showed a multi-metallic resistance capacity in polluted wetlands. M. vulgare was the most efficient in metal accumulation and the best host for mycorrhizal fungi. AMF played a major role in metal accumulation and translocation.
Rocznik
Strony
103--114
Opis fizyczny
Bibliogr. 52 poz., fot., tab., wykr.
Twórcy
  • University of Oran, Algeria, Laboratory of Microorganisms Biology and Biotechnology
  • University of Mostaganem Abdelhamid Ibn Badis, Algeria
autor
  • University of Oran, Algeria, Laboratory of Microorganisms Biology and Biotechnology
Bibliografia
  • 1. Baker, A.J.M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals, Journal of Plant Nutrition, 3, pp. 643-654. https://doi.org/10.1080/01904168109362867
  • 2. Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry, Biorecovery, 1(2), pp. 81-126.
  • 3. Bankaji, I., Caęador, I. & Sleimi, N. (2016). Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: The indicator role of antioxidative enzymes, Ecological Indicators, 64, pp. 297-308. https://doi.org/10.1016/j.ecolind.2016.01.020
  • 4. Barbafieri, M., Dadea, C., Tassi, E., Bretzel, F. & Fanfani, L. (2011). Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: Discovering native flora for phytoremediation, International Journal of Phytoremediation, 13(10), pp. 985-997. https://doi.org/10.1080/15226514.2010.549858
  • 5. Bareen, F.E. & Tahira, S.A. (2011). Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: Field trials for toxic metal cleanup using Suaeda fruticose, Journal of Hazardous Materials, 186(1), pp. 443-450. https://doi.org/10.1016/j.jhazmat.2010.11.022
  • 6. Becerra, A., Bartoloni, N., Cofré, N., Soteras, F. & Cabello, M. (2016). Mycorrhizal-arbuscular fungi associated with Chenopodiaceae in two saline environments of Córdoba, Boletin de La Sociedad Argentina de Botanica, 51(1), pp. 5-13. (in Spanish)
  • 7. Belabed, B.-E., Meddour, A., Samraoui, B., & Chenchouni, H. (2017). Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa, Environmental Monitoring and Assessment, 189(6), pp. 265. https://doi.org/10.1007/s10661-017-5968-5
  • 8. Bradl, H.B. (2005). Heavy metal in the Environment, Elsevier Academic Press, 2005.
  • 9. Brundrett, M., Bougher, N., Dell, B., Grove, T. & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture, ACIAR Monograhph, The Journal of Biological Chemistry, 32, 374. https://doi.org/10.1046/j.1469-8137.1997.00703-7.x
  • 10. Chaudhry, M.S., Batool, Z. & Khan, A.G. (2005). Preliminary assessment of plant community structure and arbuscular mycorrhizas in rangeland habitats of Cholistan desert, Pakistan, Mycorrhiza, 15(8), pp. 606-611. https://doi.org/10.1007/s00572-005-0002-0
  • 11. Chenchouni, H. (2017). Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2016.09.071
  • 12. de Marins, J.F., Carrenho, R. & Thomaz, S.M. (2009). Occurrence and coexistence of arbuscular mycorrhizal fungi and dark septate fungi in aquatic macrophytes in a tropical river-floodplain system, Aquatic Botany, 91(1), pp. 13-19. https://doi.org/10.1016/). aquabot.2009.01.001
  • 13. Dobignard, A. & Chatelain, C. (2013). Synonymic index flora of North Africa, Geneve, 2013. (in French)
  • 14. Doubková, P. & Sudová, R. (2016). Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance, Applied Soil Ecology, 99, pp. 78-88. https://doi.org/10.1016/j.apsoil.2015.11.004
  • 15. Franke-Snyder, M., Douds, D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L. & Morton, J.B. (2001). Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA, Applied Soil Ecology, 16(1), pp. 35-48. https://doi.org/10.1016/S0929-1393(00)00100-1
  • 16. Gerdemann, J.W. & Nicolson, T.H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Transactions of the British Mycological Society, 46(2), pp. 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
  • 17. Hammer, E.C., Nasr, H., Pallon, J., Olsson, P.A. & Wallander, H. (2011). Elemental composition of arbuscular mycorrhizal fungi at high salinity, Mycorrhiza, 21, pp. 117-129. https://doi. org/10.1007/s00572-010-0316-4
  • 18. Jiménez, M.N., Bacchetta, G., Casti, M., Navarro, F.B., Lallena, A.M. & Fernández-Ondoño, E. (2011). Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia, Ecological Engineering, 37(2), pp. 392-398. https://doi.org/10.1016/j.ecoleng.2010.11.030
  • 19. Kamal, S., Prasad, R. & Varma, A. (2010). Soil microbial diversity in relation to heavy metals, Soil Heavy Metals, 19, pp. 31-63. https://doi.org/10.1007/978-3-642-02436-8_3
  • 20. Lefevre, I., Marchal, G., Meerts, P., Corréal, E. & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65(1), pp. 142-152. https://doi.org/10.1016/j.envexpbot.2008.07.005
  • 21. Lenoir, I., Fontaine, J. & Lounes-Hadj Sahraoui, A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review, Phytochemistry, pp. 123, 4-15. https://doi.org/10.1016/j.phytochem.2016.01.002
  • 22. Liu, H., Li, T., Ding, Y, Yang, Y. & Zhao, Z. (2017). Dark septate endophytes colonizing the roots of “non-mycorrhizal”plants in a mine tailing pond and in a relatively undisturbed environment, Southwest China, Journal of Plant Interactions, 9145(October). https://doi.org/10.1080/17429145.2017.1333635
  • 23. Luginbuehl, L.H. & Oldroyd, G.E.D. (2017). Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants, Current Biology, 27(17), pp. 952-963. https://doi.org/10.1016/j. cub.2017.06.042
  • 24. Lutts, S. & Lefevre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany, pp. 1-20. https://doi.org/10.1093/aob/mcu264
  • 25. Maciá-Vicente, J.G., Ferraro, V., Burruano, S. & Lopez-Llorca, L.V (2012). Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient, Microbial Ecology, 64(3), pp. 668-679. https://doi.org/10.1007/s00248-012-0066-2
  • 26. Maire, R. (1958-1976). Flora ofNorth Africa, I. 1, 16, In: Encyclopédie biologique (Le chevalier), Paris. (in French)
  • 27. Manousaki, E. & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (AtripLex halimus L.): Metal uptake in relation to salinity, Environmental Science and Pollution Research, 16(7), pp. 844-854. https://doi.org/10.1007/s11356-009-0224-3
  • 28. Mathieu, C. & Pieltain, F. (2003). Soils chemical analysis (Tec&Doc). Paris: Lavoisier.
  • 29. Martínez-Fernández, D., Arco-Lázaro, E., Bernal, M.P. & Clemente, R. (2014). Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment, Ecological Engineering, 73, pp. 588-597. https://doi.org/10.1016/j.ecoleng.2014.09.105
  • 30. Megharbi, A., Abdoun, F. & Belgherbi, B. (2016). Plants diversity in relation to abiotic gradients in the wetland of macta (western Algeria), Revue D’écologie (Terre et Vie), 71(2), pp. 142-155. (in French)
  • 31. Meier, S., Borie, F., Bolan, N. & Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi, Critical Reviews in Environmental Science and Technology, 42(7), pp. 741-775. https://doi.org/10.1080/10643389.2010.528518
  • 32. Moora, M., Öpik, M., Davison, J., Jairus, T., Vasar, M., Zobel, M. & Eckstein, R.L. (2016). AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa, Mycorrhiza, 26(7), pp. 735-745. https://doi.org/10.1007/s00572-016-0709-0
  • 33. Moreno-Jiménez, E., Peñalosa, J.M., Esteban, E. & Carpena-Ruiz, R.O. (2007). Mercury accumulation and resistance to mercury stress in Rumex induratus and Marrubium vulgare grown in perlite, Journal of Plant Nutrition and Soil Science, 170(4), pp. 485-494. https://doi.org/10.1002/jpln.200625238
  • 34. Nagaraj, K., Priyadharsini, P. & Muthukumar, T. (2015). Mycorrhizal and septate endophytic fungal associations in gymnosperms of southern India, Anales de Biología, 37, pp. 83-94. https://doi.org/10.6018/analesbio.37.8
  • 35. Oehl, F., Alves Da Silva, G., Goto, B.T. & Sieverding, E. (2011). New recombinations in Glomeromycota, Mycotaxon, 117, pp. 429-434. https://doi.org/10.5248/117.429
  • 36. Ouzounidou, G., Skiada, V., Papadopoulou, K.K., Stamatis, N., Kavvadias, V., Eleftheriadis, E. & Gaitis, F. (2015). Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia (Salvia hispanica L.) leaves, Revista Brasileira de Botanica, 38(3), pp. 487-495. https://doi. org/10.1007/s40415-015-0166-6
  • 37. Padmavathiamma, P.K. & Li, L.Y (2007). Phytoremediation technology: Hyper-accumulation metals in plants, Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-007-9401-5
  • 38. Phillips, J.M. & Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Transactions of the British Mycological Society, 55(1), pp. 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3
  • 39. Plenchette, C. & Duponnois, R. (2005). Growth response of the saltbush Atriplex nummularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices, Journal of Arid Environments, 61(4), pp. 535-540. https://doi.org/10.1016/).jaridenv.2004.10.003
  • 40. Rabier, J., Laffont-Schwob, I., Pricop, A., Ellili, A., D’Enjoy-Weinkammerer, G., Salducci, M.D., Prudent, P., Lotmani, B., Tonetto, A. & Masotti, V. (2014). Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone, Water, Air, and Soil Pollution, 225(7). https://doi.org/10.1007/s11270-014-1993-y
  • 41. Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota), Mycorrhiza, 23(7), pp. 515-531. https://doi.org/10.1007/s00572-013-0486-y
  • 42. Roda, J.J., Díaz, G. & Torres, P. (2008). Spatial distribution of arbuscular mycorrhizal fungi in the rhizosphere of the salt marsh plant Inula crithmoides L. along a salinity gradient, Arid Land Research and Management, 22(4), pp. 310-319. https://doi. org/10.1080/15324980802388199
  • 43. Sai Kachout, S., Mansoura, A. Ben, Mechergui, R., Leclerc, J.C., Rejeb, M.N. & Ouerghi, Z. (2012). Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil, Journal of the Science of Food and Agriculture, 92(2), pp. 336-342. https://doi.org/10.1002/jsfa.4581
  • 44. Samraoui, B., Bounaceur, F., Bouzid, A. & Alioua, Y.A. (2015). Lake Télamine in Algeria , a new breeding site of the Greater Flamingo Phoenicopterus roseus, Alauda, 3, pp. 235-238.
  • 45. Sawalha, M.F., Gardea-Torresdey, J.L., Parsons, J.G., Saupe, G. & Peralta-Videa, J.R. (2005). Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP-OES, Microchemical Journal, 81(1), pp. 122-132. https://doi.org/10.1016/j.microc.2005.01.008
  • 46. Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants, Reviews of Environmental Contamination and Toxicology, 232, pp. 1-44. https://doi.org/10.1007/978-3-319-06746-9
  • 47. Trouvelot, A., Kough, J. & Gianinazzi-Pearson, V. (1986). Measuring the rate of VA mycorrhization of root systems. Research Methods for Estimating having a functional significance, in: V. Gianinazzi- Pearson & S. Gianinazzi (Eds.), 1st European Symposium on Mycorrhizae: Physiological and Genetical Aspects of Mycorrhizae, pp. 217-222, Dijón, INRA, Paris.
  • 48. Wali, M., Ben Rjab, K., Gunsé, B., Lakdhar, A., Lutts, S., Poschenrieder, C. & Tahar, G. (2014). How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere, 117(1), pp. 243-250. https://doi.org/10.1016/j.chemosphere.2014.07.041
  • 49. Wei, Y., Su, Q., Sun, Z. J., Shen, Y. Q., Li, J. N., Zhu, X. L. & Wu, F. C. (2016). The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony, Applied Soil Ecology, 107, pp. 244-250. https://doi.org/10.1016/j.apsoil.2016.04.021
  • 50. Wójcik, M., Dresler, S., Plak, A. & Tukiendorf, A. (2015). Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids, Environmental Science and Pollution Research International, 22(10), pp. 7906-7917. https://doi.org/10.1007/s11356-014-3963-8
  • 51. Yang, C., Ellouze, W., Navarro-Borrell, A., Taheri Esmaeili, A., Klabi, R., Dai, M. & Hamel, C. (2014). Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, 4, Springer- -Verlag Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-662-45370-4
  • 52. Yang, Y., Song, Y., Scheller, H. V., Ghosh, A., Ban, Y., Chen, H. & Tang, M. (2015). Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils, Soil Biology and Biochemistry, 86, pp. 146-158. https://doi.org/10.1016/j.soilbio.2015.03.018
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-840049b5-df01-42c7-8cc1-b24d7c42e4a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.