PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Antibacterial Fibers Containing Nanosilica with Immobilized Silver Nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of the presented research was to obtain antibacterial fibers containing nanosilica with immobilized silver nanoparticles. The nanomodifier in an amount of 250 ppm, 500 ppm, 1,000 ppm, and 2,000 ppm were introduced into the cellulose fiber matrix during the cellulose dissolution process. In order to assess the influence of the nanomodifier's amount in the fiber on the antibacterial activity of modified fiber, a quantitative test of the antibacterial activity of the fibers was performed. The basic parameters of modified fibers, such as the mechanical and hygroscopic, were estimated. The size and shape of the nanomodifier in the selected fibers, as well as microanalysis of the polymer matrix, were examined. The investigations were conducted by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectrometry (EDS). The obtained results allowed the selection of optimal fibers with strong antibacterial properties that can be potentially used for personal protection or medical purposes.
Rocznik
Strony
441--448
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Lodz Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
  • Lodz Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
  • Lodz Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
  • Scientific and Research Center for Fire Protection National Research Institute, Nadwislanska 213, 05-420 Jozefow, Poland
Bibliografia
  • [1] Borsa, J. (2012). Antimicrobial natural fibres, in: Handbook of natural fibres (1st ed., Vol. I), Woodhead Publishing Limited (Cambridge), pp. 428-466.
  • [2] Joshi, M., Bhattacharyya, A. (2011). Nanotechnology – A new route to high performance functional textiles. Textile Progress, 43, 65-83.
  • [3] Haque, M. (2019). Nano fabrics in the 21st century: A review. Asian Journal in Nanoscience and Materials, 2(2), 131-148.
  • [4] Rivero, P. J., Urrutia, A., Goicoechea, J., Arregui, F. J. (2015). Nanomaterials for funcional textiles and fibers. Nanoscale Research Letters, 10, 501.
  • [5] Chernousova, S., Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Ed. 52, 1636-1653.
  • [6] Zhang, X. F., Liu, Z. G., Shen, W., Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534-1568.
  • [7] Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., et al. (2014). Nanosilver particles in medical applications: Synthesis, performance and toxicity. International Journal of Nanomedicine, 9(1), 2399-2407.
  • [8] Li, S. H., Jun, B. H. (2019). Silver nanoparticles: Synthesis and applications for nanomedicine. International Journal of Molecular Sciences, 20(4), 865.
  • [9] Mahmud, R., Nabi, F. (2017). Application of nanotechnology in the field of textile. Journal of Polymer and Textile Engineering, 4(1), 1-6.
  • [10] Gokarneshan, N. (2018). Some significant trends in antibacterial nano textile finishes. Current Trends in Biomedical Engineering & Biosciences, 14(5), 89-91.
  • [11] Rojas-Lema, S., Galeas-Furkado, S. G., Guerrero-Barragan, W. H. (2017). Improvement of silver nanoparticle impregnation on cotton fabrics using a binder. Revista Facultad de Ingenieria, 26(45), 109-119.
  • [12] Pivec, T., Hribernik, S., Kolar, M., Kleinschek K. S. (2017). Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydrate Polymers, 163, 92-100.
  • [13] Rac-Rumijowska, O., Fiedot, M., Karbownik, I., Suchorska-Woźniak, P., Teterycz, H. (2017). Synthesis of silver nanoparticles in NMMO and their in situ doping into cellulose fibers. Cellulose, 24, 1355-1370.
  • [14] Smiechowicz, E., Kulpinski, P., Niekraszewicz, B., Bemska, J., Morgiel, J. (2014). Effect of silver nanoparticles shape, size and distribution on cellulose fibers’ color. Coloration Technology, 130, 424-431.
  • [15] Ahmed, H. M., Abdellatif, M. M., Ibrahim, S., Abdellatif, F. H. H. (2019). Mini-emulsified Copolymer/Silica nanocomposite as effective binder and self-cleaning for textiles coating. Progress in Organic Coatings, 129, 52-58.
  • [16] Riaz, S., Ashraf, M., Hussain, T., Hussain, M. T. (2019). Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose, 26(8), 5159-5175.
  • [17] Naeem, J., Mazari, A., Akcagun, E., Kus, Z. (2018). SiO2 aerogels and its application in firefighter protective clothing. Industria Textila, 69(1), 50-54.
  • [18] Naeem, J., Mazari, A., Akcagun, E., Kus, Z., Havelka, A. (2018). Analysis of thermal properties, water vapor resistance and radiant heat transmission through different combinations of firefighter protective clothing. Industria Textila, 69(6), 458-465.
  • [19] Zhuang, C., Chen, Y. (2019). The effect of nano – SiO2 on concrete properties: A review. Nanotechnology Review, 8, 562-572.
  • [20] Jankiewicz, B. (2010). Nanostruktury krzemionkowo-metaliczne. I. Otrzymywanie i modyfikacja nanoczastek krzemionkowych. Wiadomosci Chemiczne, 64, 11-12.
  • [21] Singh, P., Srivastava, S., Singh, S.K. (2019). Nanosilica: Recent progress in synthesis, functionalization, biocompability and biomedical applications. ACS Biomaterials Science and Engineering, 5, 4882-4898.
  • [22] Azlina, H., Hasnidawani, J. N., Norita, H., Surip, S. N. (2016). Synthesis of SiO2 nanostructures using sol-gel method. Acta Physica Polonica Series A, 129(4), 842-844.
  • [23] Lazareva, S., Tatarova, L. E., Shikina, N. V., Ismagilov, Z. (2017). Synthesis of high-purity silica nanoparticles by sol-gel method. Eurasian Chemico-Technological Journal, 19(4), 295-302.
  • [24] Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K., Makino, K. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1), 125-131.
  • [25] Stanleya, R., Nesaraj, A. S. (2014). Effect of surfactants on the wet chemical synthesis of silica nanoparticles. International Journal of Applied Science and Engineering, 12(1), 9-21.
  • [26] Jang, H. D., Chang, H., Suh, Y. J., Okuyama, K. (2006). Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Current Applied Physics, 6(1), e110-e113.
  • [27] Yan, F., Jianguo, J., Chen, X., Tian, S. (2014). Synthesis and characterization of silica nanoparticles preparing by low-temperature vapor-phase hydrolysis of SiCl4. Industrial & Engineering Chemistry Research, 53(30), 11884-11890.
  • [28] Finnie, K., Bartlett, J. R., Barbé, Ch. J., Kong L. (2007). Formation of silica nanoparticles in microemulsions. Langmuir, 23(6), 3017-3024.
  • [29] Peres, E. C., Slaviero, J. C., Cunha, A. M., Hosseini-Bandegharaei, A., Dotto, G. L. (2018). Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. Journal of Environmental Chemical Engineering, 6(1), 649-659.
  • [30] El-Gabry, L. K., Allam, O. G., Hakeim, O. A. (2013). Surface functionalization of viscose and polyester fabrics toward antibacterial and coloration properties. Carbohydrate Polymer, 92, 353-359.
  • [31] Zielecka, M., Bujnowska, E., Wenda, M., Jeziorska, R., Cyruchin, K., et al. (2010). Instytut Chemii Przemysłowej w Warszawie. Patent polski PL-217617.
  • [32] Zielecka, M., Bujnowska, E., Kepska, B., Wenda, M., Piotrowska, M. (2011). Antimicrobial additives for architectural paints and impregnates. Progress in Organic Coatings, 72, 193-201.
  • [33] Kulpinski, P. (2005). Cellulose fibers modified by silicon dioxide nanoparticles. Journal of Applied Polymer Science, 98, 1793-1798.
  • [34] Niekraszewicz, B. (2006). Antybakteryjne włokna celulozowe z nanomodyfikatorami. Przemysl Chemiczny, 85(8-9), 959-961.
  • [35] Smiechowicz, E., Niekraszewicz, B., Kulpinski, P., Dzitko, K. (2018). Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica. Cellulose, 25(6), 3499-3517.
  • [36] Smiechowicz, E., Kulpinski, P., Niekraszewicz, B., Bacciarelli, A. (2011). Cellulose fibers modified with silver nanoparticles. Cellulose, 18, 975-985.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83fb66a6-5ae2-4928-b8a6-ebf347a8644f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.