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Abstract

Modern software testing demands high degree of automation especially in test 
data generation domain. Comparing procedure call behaviors with diverse, 
automatically generated data, exhibiting various levels of correctness, allows 
programmers, test engineers and quality managers to track the impact of
software changes over time on the designed and implemented system. There are
no well known frameworks offering such functionality for functional 
programming languages. The paper presents a sketch of such framework for 
Clojure and allows readers to get a detailed insight into some implementation
details of the solution.
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1 Introduction

Software testing is a very important element of the software production
process. The idea of writing tests ahead before the actual implementation or 
even design phase emerged do become TDD [1] � one of the most widely
used software development methodologies. Although testing does not prove 
the software correct [2, 3], it contributes to the defects elimination beyond 
doubt [4]. It is especially important in the dynamically typed languages, like
for example these from the Lisp family of functional languages, where the 
possibility to eliminate errors on the compilation time is limited by the nature
of the type system even though the type system is a strong one. Besides even
in the statically and strongly typed programming languages like imperative 
Ada [5] or functional  Haskell [6] there are always possibilities of making
algorithmic or semantic errors. These kinds of mistakes cannot be captured by 
a compiler or any other kind of static analyzer due to the fact that performing 
the full automated proofs of software correctness is: 
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- impossible in general, especially under the assumption that the language
designers leave a programmer with a full stack of means of programming
abstraction, 

- almost achievable if we assume a ruthless restrictions imposed on the set 
of usable language features [7], but unattainable when we consider the al-
gorithmic correctness � telling whether what the programmer has told the
program to do is correct or not.

As a result of the above considerations performing the observations of 
software behavior on the run-time cannot be abandoned as one of the key 
ways to achieve the desirable reliability even in the critical software projects. 

Testing and the TDD in particular have some discouraging characteristics:
- It costs time and money to actually write tests.
- Writing tests seems boring to most programmers. 
- Putting the process of writing tests in the first (or some initial) place in the

whole development cycle may lead to an unintended effect of making it 
the most important phase, or making an impression of putting other (some-
times more essential) activities like designing to abstractions into a shade. 

- Writing tests for the software that already exists is even more difficult and 
cumbersome [8].

For all these reasons there is a permanent urge to complement unit and ac-
ceptance testing based on hand-written test cases with more automated ap-
proaches like black-box or white-box procedure testing. Some of them inte-
grate static analysis with run-time observations to improve the set or sets of 
testing data (arguments). 

2 Background 

Rich Hickey, the Clojure language creator once asked �Do guard rails 
guide you where you want to go? � [9]. This rhetorical question suggests that 
although testing based on manual test-cases creation is very important, it
should not be overrated as a mean to achieve a goal � producing high quality
reliable software. The experiences of the author of this paper gathered while 
working on ~55 KLOC software project stay closely related to Hickey's ob-
servations. The process of reaching software reliability when performed under
the assumption our workforces are low needs automation that goes beyond 
what TDD has to offer. And even the original TDD approach can be supple-
mented with an automated test generation and execution without a loss. 

The trouble is, although there are many testing frameworks for Clojure, 
like clojure.test [10], Specjl [11], Midje [12] and other functional program-
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The behavior traces (called behaviors from now on) may be persistently
stored over time and the process of generating them may be repeatedly ex-
ecuted over time. A behavior gives a programmer an immediate information
how his procedure behaves under stress (illegal data, corner cases etc.) and 
behaviors comparisons (diffs) answers the question about an impact of 
change/changes in the procedure behavior before and after. 

When programming using the functional style a programmer puts an im-
pact on using procedures as the most important means of abstraction. Testing 
(gathering behaviors of) procedures belonging to various abstraction level and
software layers allows to fit the actual test (behavior execution) to the abstrac-
tion level. This is why there are no behavior sub-classes which would parallel 
unit or acceptance testing. This kind of partitioning seems non-natural here. 

From now on the paper describes some selected and implemented parts of 
the framework. 

4  Arguments Generation Routines 

In Clojure there are the following four classes of argument lists (lists of 
formal parameters, shortly arglists) in procedures: 
1. fixed arity arglists: [], [x y], [x y z]
2. variable arity arglists: [& args], [x y & args]

3. fixed arity arglists with maps playing the role of arguments carriage, pos-
sibly using destructuring bind technique: [{:keys [y z]}], [x {:keys [y 

z]}]

4. variable arity arglists with maps playing the role of keyword arguments 
carriage: [& {:keys [y z]}], [x & {:keys [y z]}]

The mechanisms described in this section allow either the programmer or 
an automaton to perform all the necessary manipulations needed to generate 
sequences of arguments for procedures having the formal parameters of all 
kinds listed above. They are in some way essential thus we start from taking a 
detailed look on them. 

The arguments collections manipulation operators (procedures) assume an
argument collection is a sequence. Because they manipulate multiple argu-
ment collections, they all have variable arity. They all produce a sequence of
arguments, so their type may be symbolically described as [& colls of argu-
ments] → coll of arguments.

The procedures that modify/manipulate arguments expect the arguments to 
be either sequential collections or key-value (map entries) sequences. Their 
type is [arguments] → coll of arguments. 

The arguments are assumed to be sequences of values. The assumption is
related to the fact we want to apply the arguments (a sequence) to a proce-
dure. 
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All the following source code examples assume the following Clojure
name-space context:

(ns kongra.behavior 
  (:refer-clojure :exclude [rand]) 
   
  (:use     [kongra.core]) 
  (:require [clojure.set                :as CSET] 
            [clojure.math.combinatorics :as CMCOMB] 

            [kongra.behavior            :as B] 
            [kongra.identity            :as ID] 
            [kongra.fressian            :as FRESS])) 

The operator cat concatenates given arguments collections. It's internal 
workings are based on using the standard clojure.core/apply procedure: 

(defn cat 
  [& colls] 
  (->> colls 
       (apply concat) 

       (with-correctness1 (apply correctness1 colls)))) 

In a Clojure REPL one could execute the following and observe the re-
sults2 of using cat: 

> (cat [1 2 3 4] [[:a :b] [:c :d]]) 
(1 2 3 4 [:a :b] [:c :d]) 

When generating arguments by matching together single values from the 
passed sequences of values one can zip the sequences together:

(defn zip 
  [& colls] 
  (->> colls 
       (apply map vector) 
       (with-correctness (apply correctness colls)))) 

and the following occurs: 
> (zip [1 2 3 4] [[:a :b] [:c :d]]) 
([1 [:a :b]]  
 [2 [:c :d]])

                                                     
1 For arguments' and arguments collections' correctness, please go to section 5 of this paper.
2 All procedures described in this section produce lazily evaluated results. 
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As you can see, the related (with respect to the same position) components 
of passed streams are combined to form new arguments and later placed in a
resulting stream. The zip operator has it's variadic version called vzip:

(defn vzip 
  [& colls] 
  (->> colls 
       (apply map #(concat (butlast %&) (last %&))) 
       (with-correctness (apply correctness colls)))) 

that produces a slightly different result when applied to the same set of data: 

> (vzip [1 2 3 4] [[:a :b] [:c :d]]) 
((1 :a :b)  
 (2 :c :d)) 

The vzip operator may be especially useful when creating streams of ar-
guments to test procedures with variadic arities.

To combine every element of all arguments collections with one another 
one must use the Cartesian product prod:

(defn prod 
  [& colls] 
  (->> colls 
       (apply CMCOMB/cartesian-product) 
       (with-correctness (apply correctness colls)))) 

or it's �variadic� counterpart � vprod:

(defn vprod 
  [& colls] 
  (->> colls 
       (apply B/prod) 
       (map #(concat (butlast %) (last %))) 
       (with-correctness (apply correctness colls)))) 

The two operators give results as follows: 
> (prod [1 2 3 4] [[:a :b] [:c :d]]) 
((1 [:a :b])  
 (1 [:c :d])  
 (2 [:a :b])  
 (2 [:c :d])  
 (3 [:a :b])  
 (3 [:c :d])  
 (4 [:a :b])  
 (4 [:c :d])) 
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> (vprod [1 2 3 4] [[:a :b] [:c :d]]) 
((1 :a :b)  
 (1 :c :d)  
 (2 :a :b)  
 (2 :c :d)  
 (3 :a :b)  
 (3 :c :d)  
 (4 :a :b)  
 (4 :c :d)) 

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those 
which generate a stream of variable arity arguments sets: 

(defn vargs 
  [coll] 
  (->> coll count inc range
       (map #(take % coll)) 
       (with-correctness (correctness coll)))) 

> (vargs [1 2 3 4]) 
(()  
 (1)  
 (1 2)  
 (1 2 3)  
 (1 2 3 4)) 

The vargs operator takes an example arguments vector and generates an 
arguments collection (stream, coll of arguments) with variable arguments
vector size, as presented above. Similarly, vmaps:

(defn vmaps 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries
       powerset      ;; all possible subsets
       (map #(apply hash-map (apply concat %))) 
       (with-correctness (correctness keyvals)))) 

produces a stream of maps (associative collections) with all possible �arities� 
of map entries:  
> (vmaps [:a 1 :b 2]) 
({}  
 {:a 1}  
 {:b 2}  
 {:a 1, :b 2}) 
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To produce a testing collection for the procedures with formal parameters
of type 4 � the variable arity arglists with maps playing the role of keyword
arguments carriage, a simple mapargs may be used:

(defn mapargs 
  [m] 
  (->> m 
       (apply concat) 
       (with-correctness (correctness m)))) 

> (mapargs {:a 1 :b 2}) 
(:a 1 :b 2) 

together with a vmapargs operator:

(defn vmapargs 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries
       powerset      ;; all possible subsets
       (map #(apply concat %)) 
       (with-correctness (correctness keyvals)))) 

> (vmapargs [:a 1 :b 2]) 
(()  
 (:a 1)  
 (:b 2)  
 (:a 1 :b 2)) 

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries). 

Finally the two following operators: powargs and permargs use power-sets
and permutations to generate proper arguments collections:

(defn powargs 
  [coll] 
  (->> coll 
       powerset
       (with-correctness (correctness coll)))) 

> (powargs [1 2 3]) 
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3)) 

(defn permargs 
  [coll] 
  (->> coll 
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       CMCOMB/permutations 
       (with-correctness (correctness coll)))) 

> (permargs [1 2 3]) 
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1])

5  The Correctness Abstraction

The correctness is an enumerated type with an integral code field:
(deftype ^:private Correctness 
  [name code] 

  java.lang.Object 
  (toString [this] name)) 

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows: 

(def CORRECTNESS-UNDEFINED  
     (Correctness. "CORRECTNESS-UNDEFINED" (byte 0))) 
(def NON-BORDER             
     (Correctness. "NON-BORDER"            (byte 1))) 
(def BORDER                 
     (Correctness. "BORDER"                (byte 2))) 
(def PARTIALLY-CORRECT      
     (Correctness. "PARTIALLY-CORRECT"     (byte 3))) 
(def INCORRECT              
     (Correctness. "INCORRECT"             (byte 4))) 

and the correctness of a collection of objects is the maximum correctness of
the elements of the collection:

(defn- max-correctness 
  ([c] c) 
  ([c d] 
     (if (> (.longValue ^Number (.code ^Correctness c)) 
            (.longValue ^Number (.code ^Correctness d))) 
       c d)) 

  ([c d & more] 
     (reduce max-correctness  
             (max-correctness c d)             
             more))) 
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Correctness of an object may be specified explicitly by setting a proper as-
sociation in it's meta-data or implicitly, by using an indicator function imple-
mented as a Clojure protocol method:

(defprotocol WithImplicitCorrectness 
  (^:private implicit-correctness [this])) 
(defn correctness 
  ([obj] 
     (or (::correctness (meta obj))  
         (implicit-correctness obj))) 

  ([obj & rest] 
     (apply max-correctness  
            (correctness obj)  
            (map correctness rest)))) 

Finally the correctness may be applied to an ob-
ject explicitly with:

(defn with-correctness 
  [c obj] 
  (vary-meta obj assoc ::correctness c)) 

The latter approach is used in all arguments manipulation routines. 

6  Implicit Correctness for Some Known Types and Values 

The framework described here introduces implicit correctness as a prede-
fined set of procedures. In a conventional, imperative language with a static 
type system, like Ada or Java, achieving such functionality involves a signifi-
cant change(s) in a standard library, as one needs to define a set of polymor-
phic3 procedures dispatched on the types belonging to a standard library of the 
host language. Thankfully in Clojure we have protocols that are perfect means 
to implement the extension points for the desired functionality.

The implicit correctness of a sequential collection is the aggregate correct-
ness of it's elements or a BORDER correctness if the collection is empty:

(defn- implicit-seq-correctness 
  [coll] 
  (if-let [s (seq coll)] 
    (apply correctness s) 
    ;; an empty sequence is intentionally qualified  
    ;; as a BORDER one
    BORDER)) 

                                                     
3 With an inclusive polymorphism as described by L. Cardelli [16]
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For integrals we define 0, -1, 1, the maximum and minimum values as 
those having the BORDER correctness level and assign NON-BORDER to
any others:

(defn- implicit-integral-correctness 
  [^Number x ^Number min ^Number max] 
  (let [x (.longValue x)] 
    (if (or (= x (.longValue min)) 
            (= x (.longValue max)) 
            (= x  0) 
            (= x  1) 
            (= x -1)) 
      BORDER 
      NON-BORDER)))

A similar approach applies to primitive floating-point values (ja-
va.lang.Float and java.lang.Double both in Java and in Clojure). Additional-
ly the infinite and NaN (Not-a-Number) values must be considered here.

(defn- implicit-double-correctness 
  [^Double x] 
  (let [d (.doubleValue x)] 
    (if (or (Double/isNaN d) 
            (Double/isInfinite d) 
            (= d Double/MAX_VALUE) 
            (= d Double/MIN_NORMAL) 
            (= d Double/MIN_VALUE) 
            (= d  0.0) 
            (= d  1.0) 
            (= d -1.0)) 
      BORDER 
      NON-BORDER))) 

And then there is the protocol named WithImplicitCorrectness. Apart 
from the fact that it allows do implement all predefined out-of-the-box cor-
rectness values in the framework itself, it also gives the programmer a handle 
to define his own correctness assignments for types that will exist in the fu-
ture: 

(defprotocol WithImplicitCorrectness 
  (implicit-correctness [this])) 

The protocol when applied to collections uses the implicit-seq-correctness
procedure, as defined earlier in this section. One exception is the pair (a type 
named kongra.core.Pair), but it does not differ much in the semantics when 
compared to the mentioned implementation procedure:
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(extend-protocol WithImplicitCorrectness 
  ;; SEQUENTIAL COLLECTIONS
  clojure.lang.Sequential
  (implicit-correctness [this]  
     (implicit-seq-correctness this)) 
  java.util.List
  (implicit-correctness [this]  
    (implicit-seq-correctness this)) 
  kongra.core.Pair
  (implicit-correctness [this] 
    (correctness (.first this) (.second this))) 
  ;; SETS
  java.util.Set
  (implicit-correctness [this]  
    (implicit-seq-correctness this)) 

Associative containers (maps) have their correctness defined as an aggre-
gate correctness of all keys and values:

  ;; MAPS (INCLUDING RECORDS)
  java.util.Map
  (implicit-correctness [this] 
    (if-let [entries (seq this)] 
      (implicit-seq-correctness (apply concat entries)) 
      ;; an empty map has a BORDER correctness
      BORDER)) 

Strings have a BORDER correctness when they are blank (contain only 
white-space characters), and NON-BORDER otherwise:

  ;; STRING-LIKE
  java.lang.String
  (implicit-correctness [this] 
    ;; a blank string is a BORDER one
    (if (blank? this) BORDER NON-BORDER)) 

Clojure symbols and keywords �adopt� a similar String-like rule � their 
names are checked for being blank:

  clojure.lang.Named ;; symbols, keywords
  (implicit-correctness [this] 
    (if (blank? (.getName this))) 
      BORDER 
      NON-BORDER)) 

Here is how the implicit integral correctness is being defined in the protocol:
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  ;; INTEGERS
  java.lang.Byte
  (implicit-correctness [this] 
    (implicit-integral-correctness this   
                                   Byte/MIN_VALUE 
                                   Byte/MAX_VALUE)) 

  java.lang.Short
  (implicit-correctness [this] 
    (implicit-integral-correctness this  
                                   Short/MIN_VALUE  
                                   Short/MAX_VALUE)) 

  java.lang.Character
  (implicit-correctness [this] 
    (implicit-integral-correctness  
      (int this) 
      (int Character/MIN_VALUE) 
      (int Character/MAX_VALUE))) 

  java.lang.Integer
  (implicit-correctness [this] 
    (implicit-integral-correctness  
       this Integer/MIN_VALUE Integer/MAX_VALUE)) 

  java.lang.Long
  (implicit-correctness [this] 
    (implicit-integral-correctness  
       this Long/MIN_VALUE Long/MAX_VALUE)) 

The big-integer types in Java and in Clojure also �define� 0, -1 and 1 as
their BORDER values. As they do not impose any limits on how the integral 
values are allowed to be (the memory and CPU time are the only constraints), 
there are no max- or min-values being taken into account:

  ;; BIG INTEGER, BIG INT
  java.math.BigInteger
  (implicit-correctness [this] 
    (if (or (.equals this java.math.BigInteger/ZERO) 
            (.equals this java.math.BigInteger/ONE) 
            (.equals this BIG-INTEGER-MINUS-ONE)) 
      BORDER 
      NON-BORDER)) 
  clojure.lang.BigInt
  (implicit-correctness [this] 
    (if (or (.equals this  0N) 
            (.equals this  1N) 
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            (.equals this -1N)) 
      BORDER NON-BORDER))

The same applies to the arbitrary precision floating-point type ja-
va.math.BigDecimal:

  ;; BIG DECIMAL
  java.math.BigDecimal
  (implicit-correctness [this] 
    (if (or (BD/= this  0M) 
            (BD/= this  1M) 
            (BD/= this -1M))       
      BORDER 
      NON-BORDER)) 

Due to their nature Clojure rational numbers represented by instances of
clojure.lang.Ratio class [14], [15] are NON-BORDER values:

  ;; RATIO
  clojure.lang.Ratio
  (implicit-correctness [this] NON-BORDER) 

Finally the protocol defines the correctness for floats:

  ;; FLOATS
  java.lang.Float
  (implicit-correctness [this] 
    (implicit-double-correctness (ID/fldouble this))) 

  java.lang.Double
  (implicit-correctness [this] 
    (implicit-double-correctness this)) 

and any other types, including null values (nil in Clojure) have their cor-
rectness undefined: 
  ;; OTHERS
  java.lang.Object
  (implicit-correctness [this] CORRECTNESS-UNDEFINED) 

  nil
  (implicit-correctness [_] CORRECTNESS-UNDEFINED)) 
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7 Conclusions and Future Works 

The paper presented only a fraction of the whole work needed to fully im-
plement the initial idea. There are the following points that still wait for their 
detailed design and implementation:
1. Routines to explicitly specify values with various levels of correctness for 

types 
2. The results model 
3. Behaviors storage 
4. Procedures evaluation with the automatically generated collections of ar-

guments 
5. Behaviors comparison 

The main technical sections of the article concatenated on presenting the
correctness-related mechanisms and the arguments manipulating operators. 
When talking about the latter, there is an urge to design and implement an 
embedded4 DSL, a kind of a �regular expressions� language to make the 
usage of the arguments manipulation operators more effective in use than 
simply calling them explicitly. A sketch of an expression of this kind is like: 

^:prod [x & ^:vmapargs {:y 1 :z 2}] 

where the operators are used within the argist s-expression as a meta-data 
(defined with the Clojure keywords). Implementing this functionality is the
first sub-task to be done during the future development activities on the
framework presented here and it will be described in a future paper. 
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