
165

AUTOMATED PROCEDURE BEHAVIOR TRACING IN

FUNCTIONAL PROGRAMMING STYLE

Konrad Grzanek

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Modern software testing demands high degree of automation especially in test
data generation domain. Comparing procedure call behaviors with diverse,
automatically generated data, exhibiting various levels of correctness, allows
programmers, test engineers and quality managers to track the impact of
software changes over time on the designed and implemented system. There are
no well known frameworks offering such functionality for functional
programming languages. The paper presents a sketch of such framework for
Clojure and allows readers to get a detailed insight into some implementation
details of the solution.

Key words: Automated software testing, functional programming, Clojure

1 Introduction

Software testing is a very important element of the software production
process. The idea of writing tests ahead before the actual implementation or
even design phase emerged do become TDD [1] � one of the most widely
used software development methodologies. Although testing does not prove
the software correct [2, 3], it contributes to the defects elimination beyond
doubt [4]. It is especially important in the dynamically typed languages, like
for example these from the Lisp family of functional languages, where the
possibility to eliminate errors on the compilation time is limited by the nature
of the type system even though the type system is a strong one. Besides even
in the statically and strongly typed programming languages like imperative
Ada [5] or functional Haskell [6] there are always possibilities of making
algorithmic or semantic errors. These kinds of mistakes cannot be captured by
a compiler or any other kind of static analyzer due to the fact that performing
the full automated proofs of software correctness is:

Automated Procedure Behavior ...

166

- impossible in general, especially under the assumption that the language
designers leave a programmer with a full stack of means of programming
abstraction,

- almost achievable if we assume a ruthless restrictions imposed on the set
of usable language features [7], but unattainable when we consider the al-
gorithmic correctness � telling whether what the programmer has told the
program to do is correct or not.

As a result of the above considerations performing the observations of
software behavior on the run-time cannot be abandoned as one of the key
ways to achieve the desirable reliability even in the critical software projects.

Testing and the TDD in particular have some discouraging characteristics:
- It costs time and money to actually write tests.
- Writing tests seems boring to most programmers.
- Putting the process of writing tests in the first (or some initial) place in the

whole development cycle may lead to an unintended effect of making it
the most important phase, or making an impression of putting other (some-
times more essential) activities like designing to abstractions into a shade.

- Writing tests for the software that already exists is even more difficult and
cumbersome [8].

For all these reasons there is a permanent urge to complement unit and ac-
ceptance testing based on hand-written test cases with more automated ap-
proaches like black-box or white-box procedure testing. Some of them inte-
grate static analysis with run-time observations to improve the set or sets of
testing data (arguments).

2 Background

Rich Hickey, the Clojure language creator once asked �Do guard rails
guide you where you want to go? � [9]. This rhetorical question suggests that
although testing based on manual test-cases creation is very important, it
should not be overrated as a mean to achieve a goal � producing high quality
reliable software. The experiences of the author of this paper gathered while
working on ~55 KLOC software project stay closely related to Hickey's ob-
servations. The process of reaching software reliability when performed under
the assumption our workforces are low needs automation that goes beyond
what TDD has to offer. And even the original TDD approach can be supple-
mented with an automated test generation and execution without a loss.

The trouble is, although there are many testing frameworks for Clojure,
like clojure.test [10], Specjl [11], Midje [12] and other functional program-

ming la
tion fram

Our
to work
this arti
to be do

3 The

The
in a form

Gene
represen
quence
combin
ly (rand
the follo
- Bord

for th
- Non

any v
- Part

nece
entri

- Inco

Figu

anguages [13
mework nor
goal is to cr

k out some n
cle is a sketc

one to make o

e Idea

following fig
m of a mind-

erally, a Beh
nting a sequ
of argumen
ation operat
dom selectio
owing classif
der � correct
he algorithm
-border � st
vulnerability
tially correct
essary data to
ies
orrect data �

ure 1. Brainsto

3], TDD-orie
library creat

reate such a m
novel autom
ch of our ach
our goal atta

gure depicts
-map:

havior is an
ence of resu
ts. The argu
tors to sets o
on) for a type
fication with
t values capa

ms
tandard, corr
y exposures
t � e. g. as
o the algorith

all other val

orming the au

Grzanek K.

ented ones, t
ted for this pu
missing fram
ated softwar

hievements so
ainable.

the key conc

entity (eithe
ults of apply
uments may
of values spe
e. The value

h respect to th
able of playi

rect values w

ssociative co
hm but also

lues.

tomated proce

there is no a
urpose in the

mework for C
re testing ap
o far and a d

cepts, ideas a

er durable/p
ying a Cloju
be generated

ecified either
es, and so th
heir nature:
ing in a way

with no quirk

ollection arg
containing a

edure behavio

automated tes
ese language
Clojure and (
pproaches. Th
description of

and their rela

ersistent or t
re procedur
d by applyin
explicitly or

he arguments

y roles of cor

ks, unlikely p

guments prov
additional un

or tracing fram

167

st genera-
es.
(possibly)
he rest of
f what has

ationships

transient)
re to a se-
ng various
r implicit-
s undergo

rner-cases

producing

viding all
nexpected

mework

Automated Procedure Behavior ...

168

The behavior traces (called behaviors from now on) may be persistently
stored over time and the process of generating them may be repeatedly ex-
ecuted over time. A behavior gives a programmer an immediate information
how his procedure behaves under stress (illegal data, corner cases etc.) and
behaviors comparisons (diffs) answers the question about an impact of
change/changes in the procedure behavior before and after.

When programming using the functional style a programmer puts an im-
pact on using procedures as the most important means of abstraction. Testing
(gathering behaviors of) procedures belonging to various abstraction level and
software layers allows to fit the actual test (behavior execution) to the abstrac-
tion level. This is why there are no behavior sub-classes which would parallel
unit or acceptance testing. This kind of partitioning seems non-natural here.

From now on the paper describes some selected and implemented parts of
the framework.

4 Arguments Generation Routines

In Clojure there are the following four classes of argument lists (lists of
formal parameters, shortly arglists) in procedures:
1. fixed arity arglists: [], [x y], [x y z]
2. variable arity arglists: [& args], [x y & args]

3. fixed arity arglists with maps playing the role of arguments carriage, pos-
sibly using destructuring bind technique: [{:keys [y z]}], [x {:keys [y

z]}]

4. variable arity arglists with maps playing the role of keyword arguments
carriage: [& {:keys [y z]}], [x & {:keys [y z]}]

The mechanisms described in this section allow either the programmer or
an automaton to perform all the necessary manipulations needed to generate
sequences of arguments for procedures having the formal parameters of all
kinds listed above. They are in some way essential thus we start from taking a
detailed look on them.

The arguments collections manipulation operators (procedures) assume an
argument collection is a sequence. Because they manipulate multiple argu-
ment collections, they all have variable arity. They all produce a sequence of
arguments, so their type may be symbolically described as [& colls of argu-
ments] → coll of arguments.

The procedures that modify/manipulate arguments expect the arguments to
be either sequential collections or key-value (map entries) sequences. Their
type is [arguments] → coll of arguments.

The arguments are assumed to be sequences of values. The assumption is
related to the fact we want to apply the arguments (a sequence) to a proce-
dure.

Grzanek K.

169

All the following source code examples assume the following Clojure
name-space context:

(ns kongra.behavior
 (:refer-clojure :exclude [rand])

 (:use [kongra.core])
 (:require [clojure.set :as CSET]
 [clojure.math.combinatorics :as CMCOMB]

 [kongra.behavior :as B]
 [kongra.identity :as ID]
 [kongra.fressian :as FRESS]))

The operator cat concatenates given arguments collections. It's internal
workings are based on using the standard clojure.core/apply procedure:

(defn cat
 [& colls]
 (->> colls
 (apply concat)

 (with-correctness1 (apply correctness1 colls))))

In a Clojure REPL one could execute the following and observe the re-
sults2 of using cat:

> (cat [1 2 3 4] [[:a :b] [:c :d]])
(1 2 3 4 [:a :b] [:c :d])

When generating arguments by matching together single values from the
passed sequences of values one can zip the sequences together:

(defn zip
 [& colls]
 (->> colls
 (apply map vector)
 (with-correctness (apply correctness colls))))

and the following occurs:
> (zip [1 2 3 4] [[:a :b] [:c :d]])
([1 [:a :b]]
 [2 [:c :d]])

1 For arguments' and arguments collections' correctness, please go to section 5 of this paper.
2 All procedures described in this section produce lazily evaluated results.

Automated Procedure Behavior ...

170

As you can see, the related (with respect to the same position) components
of passed streams are combined to form new arguments and later placed in a
resulting stream. The zip operator has it's variadic version called vzip:

(defn vzip
 [& colls]
 (->> colls
 (apply map #(concat (butlast %&) (last %&)))
 (with-correctness (apply correctness colls))))

that produces a slightly different result when applied to the same set of data:

> (vzip [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (2 :c :d))

The vzip operator may be especially useful when creating streams of ar-
guments to test procedures with variadic arities.

To combine every element of all arguments collections with one another
one must use the Cartesian product prod:

(defn prod
 [& colls]
 (->> colls
 (apply CMCOMB/cartesian-product)
 (with-correctness (apply correctness colls))))

or it's �variadic� counterpart � vprod:

(defn vprod
 [& colls]
 (->> colls
 (apply B/prod)
 (map #(concat (butlast %) (last %)))
 (with-correctness (apply correctness colls))))

The two operators give results as follows:
> (prod [1 2 3 4] [[:a :b] [:c :d]])
((1 [:a :b])
 (1 [:c :d])
 (2 [:a :b])
 (2 [:c :d])
 (3 [:a :b])
 (3 [:c :d])
 (4 [:a :b])
 (4 [:c :d]))

Grzanek K.

171

> (vprod [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (1 :c :d)
 (2 :a :b)
 (2 :c :d)
 (3 :a :b)
 (3 :c :d)
 (4 :a :b)
 (4 :c :d))

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those
which generate a stream of variable arity arguments sets:

(defn vargs
 [coll]
 (->> coll count inc range
 (map #(take % coll))
 (with-correctness (correctness coll))))

> (vargs [1 2 3 4])
(()
 (1)
 (1 2)
 (1 2 3)
 (1 2 3 4))

The vargs operator takes an example arguments vector and generates an
arguments collection (stream, coll of arguments) with variable arguments
vector size, as presented above. Similarly, vmaps:

(defn vmaps
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply hash-map (apply concat %)))
 (with-correctness (correctness keyvals))))

produces a stream of maps (associative collections) with all possible �arities�
of map entries:
> (vmaps [:a 1 :b 2])
({}
 {:a 1}
 {:b 2}
 {:a 1, :b 2})

Automated Procedure Behavior ...

172

To produce a testing collection for the procedures with formal parameters
of type 4 � the variable arity arglists with maps playing the role of keyword
arguments carriage, a simple mapargs may be used:

(defn mapargs
 [m]
 (->> m
 (apply concat)
 (with-correctness (correctness m))))

> (mapargs {:a 1 :b 2})
(:a 1 :b 2)

together with a vmapargs operator:

(defn vmapargs
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply concat %))
 (with-correctness (correctness keyvals))))

> (vmapargs [:a 1 :b 2])
(()
 (:a 1)
 (:b 2)
 (:a 1 :b 2))

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries).

Finally the two following operators: powargs and permargs use power-sets
and permutations to generate proper arguments collections:

(defn powargs
 [coll]
 (->> coll
 powerset
 (with-correctness (correctness coll))))

> (powargs [1 2 3])
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))

(defn permargs
 [coll]
 (->> coll

Grzanek K.

173

 CMCOMB/permutations
 (with-correctness (correctness coll))))

> (permargs [1 2 3])
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1])

5 The Correctness Abstraction

The correctness is an enumerated type with an integral code field:
(deftype ^:private Correctness
 [name code]

 java.lang.Object
 (toString [this] name))

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows:

(def CORRECTNESS-UNDEFINED
 (Correctness. "CORRECTNESS-UNDEFINED" (byte 0)))
(def NON-BORDER
 (Correctness. "NON-BORDER" (byte 1)))
(def BORDER
 (Correctness. "BORDER" (byte 2)))
(def PARTIALLY-CORRECT
 (Correctness. "PARTIALLY-CORRECT" (byte 3)))
(def INCORRECT
 (Correctness. "INCORRECT" (byte 4)))

and the correctness of a collection of objects is the maximum correctness of
the elements of the collection:

(defn- max-correctness
 ([c] c)
 ([c d]
 (if (> (.longValue ^Number (.code ^Correctness c))
 (.longValue ^Number (.code ^Correctness d)))
 c d))

 ([c d & more]
 (reduce max-correctness
 (max-correctness c d)
 more)))

Automated Procedure Behavior ...

174

Correctness of an object may be specified explicitly by setting a proper as-
sociation in it's meta-data or implicitly, by using an indicator function imple-
mented as a Clojure protocol method:

(defprotocol WithImplicitCorrectness
 (^:private implicit-correctness [this]))
(defn correctness
 ([obj]
 (or (::correctness (meta obj))
 (implicit-correctness obj)))

 ([obj & rest]
 (apply max-correctness
 (correctness obj)
 (map correctness rest))))

Finally the correctness may be applied to an ob-
ject explicitly with:

(defn with-correctness
 [c obj]
 (vary-meta obj assoc ::correctness c))

The latter approach is used in all arguments manipulation routines.

6 Implicit Correctness for Some Known Types and Values

The framework described here introduces implicit correctness as a prede-
fined set of procedures. In a conventional, imperative language with a static
type system, like Ada or Java, achieving such functionality involves a signifi-
cant change(s) in a standard library, as one needs to define a set of polymor-
phic3 procedures dispatched on the types belonging to a standard library of the
host language. Thankfully in Clojure we have protocols that are perfect means
to implement the extension points for the desired functionality.

The implicit correctness of a sequential collection is the aggregate correct-
ness of it's elements or a BORDER correctness if the collection is empty:

(defn- implicit-seq-correctness
 [coll]
 (if-let [s (seq coll)]
 (apply correctness s)
 ;; an empty sequence is intentionally qualified
 ;; as a BORDER one
 BORDER))

3 With an inclusive polymorphism as described by L. Cardelli [16]

Grzanek K.

175

For integrals we define 0, -1, 1, the maximum and minimum values as
those having the BORDER correctness level and assign NON-BORDER to
any others:

(defn- implicit-integral-correctness
 [^Number x ^Number min ^Number max]
 (let [x (.longValue x)]
 (if (or (= x (.longValue min))
 (= x (.longValue max))
 (= x 0)
 (= x 1)
 (= x -1))
 BORDER
 NON-BORDER)))

A similar approach applies to primitive floating-point values (ja-
va.lang.Float and java.lang.Double both in Java and in Clojure). Additional-
ly the infinite and NaN (Not-a-Number) values must be considered here.

(defn- implicit-double-correctness
 [^Double x]
 (let [d (.doubleValue x)]
 (if (or (Double/isNaN d)
 (Double/isInfinite d)
 (= d Double/MAX_VALUE)
 (= d Double/MIN_NORMAL)
 (= d Double/MIN_VALUE)
 (= d 0.0)
 (= d 1.0)
 (= d -1.0))
 BORDER
 NON-BORDER)))

And then there is the protocol named WithImplicitCorrectness. Apart
from the fact that it allows do implement all predefined out-of-the-box cor-
rectness values in the framework itself, it also gives the programmer a handle
to define his own correctness assignments for types that will exist in the fu-
ture:

(defprotocol WithImplicitCorrectness
 (implicit-correctness [this]))

The protocol when applied to collections uses the implicit-seq-correctness
procedure, as defined earlier in this section. One exception is the pair (a type
named kongra.core.Pair), but it does not differ much in the semantics when
compared to the mentioned implementation procedure:

Automated Procedure Behavior ...

176

(extend-protocol WithImplicitCorrectness
 ;; SEQUENTIAL COLLECTIONS
 clojure.lang.Sequential
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 java.util.List
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 kongra.core.Pair
 (implicit-correctness [this]
 (correctness (.first this) (.second this)))
 ;; SETS
 java.util.Set
 (implicit-correctness [this]
 (implicit-seq-correctness this))

Associative containers (maps) have their correctness defined as an aggre-
gate correctness of all keys and values:

 ;; MAPS (INCLUDING RECORDS)
 java.util.Map
 (implicit-correctness [this]
 (if-let [entries (seq this)]
 (implicit-seq-correctness (apply concat entries))
 ;; an empty map has a BORDER correctness
 BORDER))

Strings have a BORDER correctness when they are blank (contain only
white-space characters), and NON-BORDER otherwise:

 ;; STRING-LIKE
 java.lang.String
 (implicit-correctness [this]
 ;; a blank string is a BORDER one
 (if (blank? this) BORDER NON-BORDER))

Clojure symbols and keywords �adopt� a similar String-like rule � their
names are checked for being blank:

 clojure.lang.Named ;; symbols, keywords
 (implicit-correctness [this]
 (if (blank? (.getName this)))
 BORDER
 NON-BORDER))

Here is how the implicit integral correctness is being defined in the protocol:

Grzanek K.

177

 ;; INTEGERS
 java.lang.Byte
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Byte/MIN_VALUE
 Byte/MAX_VALUE))

 java.lang.Short
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Short/MIN_VALUE
 Short/MAX_VALUE))

 java.lang.Character
 (implicit-correctness [this]
 (implicit-integral-correctness
 (int this)
 (int Character/MIN_VALUE)
 (int Character/MAX_VALUE)))

 java.lang.Integer
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Integer/MIN_VALUE Integer/MAX_VALUE))

 java.lang.Long
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Long/MIN_VALUE Long/MAX_VALUE))

The big-integer types in Java and in Clojure also �define� 0, -1 and 1 as
their BORDER values. As they do not impose any limits on how the integral
values are allowed to be (the memory and CPU time are the only constraints),
there are no max- or min-values being taken into account:

 ;; BIG INTEGER, BIG INT
 java.math.BigInteger
 (implicit-correctness [this]
 (if (or (.equals this java.math.BigInteger/ZERO)
 (.equals this java.math.BigInteger/ONE)
 (.equals this BIG-INTEGER-MINUS-ONE))
 BORDER
 NON-BORDER))
 clojure.lang.BigInt
 (implicit-correctness [this]
 (if (or (.equals this 0N)
 (.equals this 1N)

Automated Procedure Behavior ...

178

 (.equals this -1N))
 BORDER NON-BORDER))

The same applies to the arbitrary precision floating-point type ja-
va.math.BigDecimal:

 ;; BIG DECIMAL
 java.math.BigDecimal
 (implicit-correctness [this]
 (if (or (BD/= this 0M)
 (BD/= this 1M)
 (BD/= this -1M))
 BORDER
 NON-BORDER))

Due to their nature Clojure rational numbers represented by instances of
clojure.lang.Ratio class [14], [15] are NON-BORDER values:

 ;; RATIO
 clojure.lang.Ratio
 (implicit-correctness [this] NON-BORDER)

Finally the protocol defines the correctness for floats:

 ;; FLOATS
 java.lang.Float
 (implicit-correctness [this]
 (implicit-double-correctness (ID/fldouble this)))

 java.lang.Double
 (implicit-correctness [this]
 (implicit-double-correctness this))

and any other types, including null values (nil in Clojure) have their cor-
rectness undefined:
 ;; OTHERS
 java.lang.Object
 (implicit-correctness [this] CORRECTNESS-UNDEFINED)

 nil
 (implicit-correctness [_] CORRECTNESS-UNDEFINED))

Grzanek K.

179

7 Conclusions and Future Works

The paper presented only a fraction of the whole work needed to fully im-
plement the initial idea. There are the following points that still wait for their
detailed design and implementation:
1. Routines to explicitly specify values with various levels of correctness for

types
2. The results model
3. Behaviors storage
4. Procedures evaluation with the automatically generated collections of ar-

guments
5. Behaviors comparison

The main technical sections of the article concatenated on presenting the
correctness-related mechanisms and the arguments manipulating operators.
When talking about the latter, there is an urge to design and implement an
embedded4 DSL, a kind of a �regular expressions� language to make the
usage of the arguments manipulation operators more effective in use than
simply calling them explicitly. A sketch of an expression of this kind is like:

^:prod [x & ^:vmapargs {:y 1 :z 2}]

where the operators are used within the argist s-expression as a meta-data
(defined with the Clojure keywords). Implementing this functionality is the
first sub-task to be done during the future development activities on the
framework presented here and it will be described in a future paper.

References

1. Koskela L., 2008, Test Driven, Practical TDD and Acceptance TDD for Java
Developers, ISBN 1-932394-85-0, Manning Publications Co

2. E. W. Dijkstra, 1972, The Humble Programmer, ACM Turing Lecture
3. Thomas M., 2003, The Modest Software Engineer, Proc ISADS 2003, pp 169-

174, IEEE Press
4. L. Williams, E. M. Maximilien, M. Vouk, 2003, Test-Driven Development as a

Defect-Reduction Practice, ISSRE '03 Proceedings of the 14th International
Symposium on Software Reliability Engineering, pp. 34

5. 2007, Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3
6. Jones S. P., 2003, Haskell 98 language and libraries: the Revised Report, ISBN

0521826144, Cambridge University Press

4 in Clojure as the host language

Automated Procedure Behavior ...

180

7. 2008, SPARK 95 - The SPADE Ada 95 Kernel, Praxis High Integrity Systems
Ltd

8. Hevery M., 2008, Guide: Writing Testable Code, http://misko.hevery.com/code-
reviewers-guide/

9. Miller A., 2008, Clojure and testing,
http://tech.puredanger.com/2013/08/31/clojure-and-testing/

10. Sierra S., 2014, API for clojure.test,
http://richhickey.github.io/clojure/clojure.test-api.html

11. Martin M., 2014, Speclj - A TDD/BDD framework for Clojure, http://speclj.com/
12. 2014, Midje Github Repository, https://github.com/marick/Midje
13. 2014, HUnit -- Haskell Unit Testing, http://hunit.sourceforge.net/
14. Halloway S., 2009: Programming Clojure, ISBN: 978-1-93435-633-3, The

Pragmatic Bookshelf
15. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-

dia Inc., ISBN: 978-1-449-39470-7
16. Cardelli L., Wegner P., 1985, On Understanding Types, Data Abstraction and

Polymorphism, Computing Surveys, Vol. 17 n 4, pp. 471-522, 1994

