Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grain refining and modification are common foundry practice for improving properties of cast Al-Si alloys. In general, these types of treatments provide better fluidity, decreased porosity, higher yield strength and ductility. However, in practice, there are still some discrepancies on the reproducibility of the results from grain refining and effect of the refiner’s additions. Several factors include the fading effect of grain refinement and modifiers, inhomogeneous dendritic structure and non-uniform eutectic modification. In this study, standard ALCAN test was used by considering Taguchi’s experimental design techniques to evaluate grain refinement and modification efficiency. The effects of five casting parameters on the grain size have been investigated for A357 casting alloy. The results showed that the addition of the grain refiner was the most effective factor on the grain size. It was found that holding time, casting temperature, alloy type and modification with Sr were less effective over grain refinement.
Czasopismo
Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Bayburt University, Faculty of Engineering, Mechanical Engineering Department, 69000, Bayburt, Turkey
autor
- İstanbul University, Faculty of Engineering, Metallurgy and Materials Science Engineering Department, 34320, İstanbul, Turkey
Bibliografia
- [1] Bryant, M., Fisher, P. (1993). Grain Refining and the Aluminium Industry (Past, Present and Future). Aluminium Casthouse Technology.
- [2] Sigworth, G.K. & Kuhn, T.A. (2007). Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 1, 31-40.
- [3] Stefanescu, D. (2015). Science and engineering of casting solidification. Springer.
- [4] Spittle, J. (2013). Grain refinement in shape casting of aluminium alloys. International Journal of Cast Metals Research.
- [5] Cooper, P., Jacop, A., Detomi, A. (2000). Additive developments in the aluminium industry. Publisher.
- [6] Quested, T. (2004). Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Materials Science and Technology. 20, 1357-69.
- [7] Cooper, P., Hardman, A., Boot, B., Burhop, E. (2003). Characterisation of New Genaration of Grain Refiners for the Foundry Industry, 132. Publisher.
- [8] McKay, B., Nunner, G., Geier, G. & Schumacher, P. (2009). Impurities in Al–5Ti–1B grain refiner rod. International Journal of Cast Metals Research. 22, 212-5.
- [9] Boot, D., Cooper, P., StJohn, D., Dahle, A. (2002). A Comparison of Grain Refiner Master Alloys for the Foundry. TMS. Elsevier Ltd.
- [10] Parton, D., Hedges, M. (1996). A Guide to Melt Treatment in the Aluminium Foundry. London & Scandinavian Metallurgical, Londres.
- [11] Górny, M., Sikora, G. & Kawalec, M. (2016). Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy. Archives of Foundry Engineering. 16(3), 35-38.
- [12] Górny, M. & Sikora, G. (2014). Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy. Archives of Foundry Engineering. 14(3), 21-24.
- [13] Mohanty, P. & Gruzleski, J. (1995). Mechanism of grain refinement in aluminium. Acta Metallurgica et Materialia. 43, 2001-12.
- [14] Arnberg, L., Bäckerud, L. & Klang, H. (1982). Intermetallic particles in Al–Ti–B–type master alloys for grain refinement of aluminium. Metals Technology. 9, 7-13.
- [15] Easton, M. & Stjohn, D. (1999). Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature. Metallurgical and Materials Transactions A. 30, 1613-23.
- [16] Easton, M. & StJohn, D. (1999). Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metallurgical and Materials Transactions A. 30, 1625-33.
- [17] Schaffer, P.L. & Dahle, A.K. (2005). Settling behaviour of different grain refiners in aluminium. Materials Science and Engineering A. 413, 373-8.
- [18] Sigworth, G.K. (1984). The grain refining of aluminum and phase relationships in the Al-Ti-B system. Metallurgical Transactions A. 15, 277-82.
- [19] Cook, R. (1998). Modification of aluminium–silicon foundry alloys. London: London & Scandinavian metallurgical Co Limited. 12-4.
- [20] Kim, J-H., Choi, J-W., Choi, J-P., Lee, C-H., Yoon, E-P. (2000). A study on the variation of solidification contraction of A356 aluminum alloy with Sr addition. Journal of Materials Science Letters. 19, 1395-8.
- [21] Dahle, A., Nogita, K., McDonald, S., Dinnis, C. & Lu, L. (2005). Eutectic modification and microstructure development in Al–Si Alloys. Materials Science and Engineering A. 413, 243-8.
- [22] Dahle, A., Nogita, K., McDonald, S., Zindel, J. & Hogan, L. (2001). Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels. Metallurgical and Materials Transactions A. 32, 949-60.
- [23] Nogita, K., Yasuda, H., Yoshida, K., Uesugi, K., Takeuchi, A., Suzuki, Y. & Dahle, A.K. (2006). Determination of strontium segregation in modified hypoeutectic Al–Si alloy by micro X-ray fluorescence analysis. Scripta materialia. 55, 787-90.
- [24] Tupaj, M., Orłowicz, A.W., Mróz, M., Trytek, A. & Markowska, O. (2016). Usable Properties of AlSi7Mg Alloy after Sodium or Strontium Modification. Archives of Foundry Engineering. 16(3), 129-132.
- [25] Liu, L., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2004). Characteristics of α-dendritic and eutectic structures in Sr-treated Al-Si casting alloys. Journal of Materials Science. 39, 215-24.
- [26] Nielsen, Ø. & Olsen, S.O. (2013). Experiment for quantification of feedability and permeability in industrial aluminium alloys. International Journal of Cast Metals Research.
- [27] Dispinar, D., Ellingsen, K., Sabatino, M.D., Arnberg. L. (2008). Measurement of permeability of A356 alumium alloys. 2nd Int Conf Advances in Solidification Process.
- [28] Ross, P.J. (1988). Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. International Edition.
- [29] Braszczyńska-Malik, K.N. (2014). Mg-Al-RE Magnesium Alloys for High-Pressure Die-Casting. Archives of Foundry Engineering. 14(2), 49-52.
- [30] Kapisz, M., Durat, M. & Ficici, F. (2011). Friction and wear studies between cylinder liner and piston ring pair using Taguchi design method. Advances in Engineering Software. 42, 595-603.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83f09166-61ec-4f18-b075-ed45452c780e