PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Cr3C2-25% NiCr Laser Alloyed Cast Iron in High Temperature Sliding Wear Condition Using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wear behaviour of Cr3C2-25% NiCrlaser alloyed nodular cast iron sample were analyzed using a pin-on-disc tribometer. The influence of sliding velocity, temperature and load on laser alloyed sample was focused and the microscopic images were used for metallurgical examination of the worn-out sites. Box-Behnken method was utilised to generate the mathematical model for the condition parameters. The Response Surface Methodology (RSM) based models are varied to analyse the process parameters interaction effects. Analysis of variance was used to analyse the developed model and the results showed that the laser alloyed sample leads to a minimum wear rate (0.6079 ×10–3 to 1.8570 ×10–3 mm3/m) and coefficient of friction (CoF) (0.43 to 0.53). From the test results, it was observed that the experimental results correlated well with the predicted results of the developed mathematical model.
Twórcy
  • National Institute of Technology, Department of Production Engineering, Tiruchirappalli 620015, Tamil Nadu, India
  • National Institute of Technology, Department of Production Engineering, Tiruchirappalli 620015, Tamil Nadu, India
autor
  • Santhiram Engineering College, Department of Mechanical Engineering, Nandyal 518502, Andhra Pradesh, India
Bibliografia
  • [1] H. Yan, A. Wang, Z. Xiong, K. Xu, Z. Huang, Applied Surface Science. 256 (23), 7001-009 (2010).
  • [2] K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, M. J. S. Hashmi, J. Mater. Process. Technol. 170 (1-2), 127-132 (2005).
  • [3] E. Jonda, Z. Brytan, K. Labisz, A. Drygała, Arch. Metall. Mater. 61 (3), 1309-1314 (2016). DOI: 10.1515/amm-2016-0216.
  • [4] M. Bonek, Arch. Metall. Mater. 59 (4), 1647-1651 (2014). DOI: 10.2478/amm-2014-0280.
  • [5] A. R. da Costa, A. Craievich, R. Vilar, Mater. Sci. Eng. A. 336 (1-2), 215-218 (2002).
  • [6] Q. B. Liu, H. Liu, J. Mater. Process. Technol. 88, 77-82 (1999).
  • [7] W. Tarasiuk, A.I. Gordienko, A.T. Wolocko, J. Piwnik, B. Szczucka-Lasota, Arch. Metall. Mater. 60 (4), 2939-2943 (2015). DOI: 10.1515/amm-2015-0469.
  • [8] W. P. Jiang, P. Mollan, Surf. Coat. Technol. 135, (2-3), 139-149 (2001).
  • [9] B. S. Yilbas, S. Z. Shuja, S. M. A. Khan, A. Aleem, Appl. Surf. Sci. 255 (23), 9396-9403 (2009).
  • [10] W. L. Xu, T. M. Yue, H. C. Man, C. P. Chan, Surf. Coat. Technol. 200 (16-17), 5077-5086 (2006).
  • [11] J. H. Yao, L. Wang, Q. Zhang, F. Z. Kong, C. H. Lou, Z. J. Chen, Opt. Laser Technol. 40, 838-843 (2008).
  • [12] M. L. Zhong, W. J. Liu, H. J. Zhang, Wear. 260, 1349-1355 (2006).
  • [13] B. G. Guo, J. S. Zhou, S. T. Zhang, H. H. Zhou, Y. P. Pu, J. M. Chen, Mater. Sci. Eng. A. 480, 404-410 (2008).
  • [14] A. H. Wang, X. L. Zhang, X. F. Zhang, X. Y. Qiao, H. G. Xu, C. S. Xie, Mater. Sci. Eng. A. 475, (1-2), 312-318 (2008).
  • [15] M. Bonek, Arch. Metall. Mater. 61 (2), 719-724 (2016). DOI: 10.1515/amm-2016-0123.
  • [16] J. He, J. M. Schoenung, Mater. Sci. Eng. A. 336, 274-319 (2002).
  • [17] Sivarao, Shukor, T. J. S. Anand, Ammar, Int. J. of Eng. Techn. 10 (4), 1-7 (2010).
  • [18] F. H. Stott, D. S. Lin, G. F. Wood, C.W. Stevenson, Wear. 36 (2), 147-74 (1969).
  • [19] R. Kumar, S. Dhiman, Materials Design. 50, 351-359 (2013).
  • [20] J. F. Lin, C. C. Chou, Tribology International. 35 (11), 771-785 (2002).
  • [21] M. C. M. Farias, R. M. Souza, A. Sinatora, D. K. Tanaka, Wear. 263 (1-6), 773-781 (2007).
  • [22] Y. Sahin, K. A. Ozdin, Materials and Design. 29 (3), 728-733 (2008).
  • [23] Standard test method for wear testing with a pin-on-disk apparatus, ASTM Standard. G: 99-05 (2010).
  • [24] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Trans. Non Ferr. Mat. Soc. 20 (10), 1863-72 (2010).
  • [25] S. C. Vettivel, N. Selvakumar, R. Narayanasamy, N. Leema, Materials and Design. 50, 977-996 (2013).
  • [26] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater Des. 32 (5), 2878-90 (2011).
  • [27] R. Narayanasamy, M. Ravichandran, C. Sathiya Narayanan, N. L. Parthasarathi, R. Ravindran, Int. J. Mech. Mater. Des. 3 (4), 293-307 (2006).
  • [28] D. Prabhakaran, C. A. Basha, T. Kannadasan, P. Aravinthan, J. Environ Sci. Health Part A. 45 (4), 400-12 (2010).
  • [29] A. K. Lakshminarayanan, V. Balasubramanian, Trans Non Ferr Met Soc. 19 (1), 9-18 (2009).
  • [30] W. Xiao, S. Xinhua, J. Minfeng, L. Pin, H. Yang, W. Kai, Opt. Las. Technol. 44 (3), 656-63 (2012).
  • [31] P. Dinesh Babu, G. Buvanashekaran, K. R. Balasubramanian, Tribology Transactions. 58 (4), 602-615 (2015).
  • [32] A. Gulzar, J. I. Akhter, M. Ahmad, G. Ali, M. Mahmood, M. Ajmal, Appl. Surf. Sci. 255 (20), 8527-8532 (2009).
  • [33] Y. Chen, C. H. Gan, L. X. Wang, G. Yu, A. Kaplan, Appl. Surf. Sci. 245 (1-4), 316-321 (2005).
  • [34] D. W. Zeng, C. S. Xie, K. C. Yung, Mater. Sci. Eng. A. 333, 223-231 (2002).
  • [35] N. Jeyaprakash, M. Duraiselvam, S. V. Aditya, Surface Review. and Letters. 26, 1950009 (2019).
  • [36] L. Pengting, L. Yunguo, W. Yuying, M. Guiong, L. Xiangfa, Mater. Sc. Eng. A. 546, 146-52 (2012).
  • [37] B. Bhushan, W. E. Jahsman, Int. J. Solids and Struc. 14 (1), 39-51 (1978).
  • [38] B. Bhushan, W. E. Jahsman, Int. J. Solids and Struc. 14 (9), 739-753 (1978).
  • [39] M. A. Chowdhury, M. M. Helali, Tribology International. 41 (4), 307-314 (2008).
  • [40] K. Velmanirajan, A. S. Abu Thaheer, R. Narayanasamy, C. A. Basha, Mater. Des. 41, 239-54 (2012).
  • [41] S. Anbuselvan, S. Ramanathan, Mater. Des. 31 (4), 1930-6 (2010).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ee7394-6516-4de5-bddf-71557f429213
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.