PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoremediation of phenol using Polygonum orientale and its antioxidative response

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polygonum orientale with beautiful red flowers can be found as one dominant species in the vicinity of most water bodies and wetlands in China. However, its phytoremediation potential has not been sufficiently explored because little is known about its resistance to inorganic or organic pollutants. We investigated P. orientale response to low and moderate levels of phenol stress (≤ 80 mg L-1). Endpoints included phenol tolerance of P. orientale and the removal of the pollutant, antioxidant enzyme activities, damage to the cell membrane, osmotic regulators and photosynthetic pigments. In plant leaves, phenol stress significantly increased the activities of peroxidase (POD) and catalase (CAT), as well as the contents of proline, soluble sugars and carotenoids, whereas superoxide dismutase (SOD), H2O2 and electrolyte leakage (EL) levels remained unaltered. On the other hand, there were significant decreases of soluble protein and chlorophyll contents. We demonstrated that, in combination with phenol tolerance and its removal, P. orientale has efficient protection mechanisms against phenol-induced oxidative damage (≤ 80 mg L-1). We propose that P. orientale could be used as an alternative and interesting material in the phytoremediation of phenol.
Rocznik
Strony
39--46
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
autor
  • Shanxi University, PR China School of Life Science
autor
  • Shanxi University, PR China School of Life Science
autor
  • Shanxi University, PR China School of Life Science
autor
  • Shanxi University, PR China School of Life Science
autor
  • Shanxi University, PR China School of Life Science
Bibliografia
  • [1] Abei, H. (1984). Catalase in vitro, Methods in Enzymology, 105, pp. 121-126.
  • [2] Bates, L.S., Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies, Plant and Soil, 39, 1, pp. 205-207.
  • [3] Bhardwaj, P., Chaturvedi, A.K. & Prasad, P. (2009). Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L., Nature and Science, 7, 8, pp. 63-75.
  • [4] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 1, 248-254.
  • [5] Busca, G., Berardinelli, S., Resini, C. & Arrighi, L. (2008). Technologies for the removal of phenol from fl uid streams: a short review of recent developments, Journal of Hazardous Materials, 160, 2, pp. 265-288.
  • [6] Coniglio, M.S., Busto, V.D., Gonzáles, P.S., Medina, M.I., Milrad, S. & Agostini, E. (2008). Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions, Chemosphere, 72, 7, pp. 1035-1042.
  • [7] Coyner, A., Gupta, G. & Jones, T. (2001). Effect of chlorsulfuron on growth of submerged aquatic macrophyte Potamogeton pectinatus (sago pondweed), Environmental Pollution, 111, 3, pp. 453-455.
  • [8] D’Alessandro, O., Thomas, H.J. & Sambeth, J.E. (2012). An analysis of the first steps of phenol adsorption-oxidation over coprecipitated Mn-Ce catalysts: a DRIFTS study, Reaction Kinetics, Mechanisms and Catalysis, 107, 2, pp. 295-309.
  • [9] Dhindsa, R.S. & Matowe, W. (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation, Journal of Experimental Botany, 32, 1, pp. 79-91.
  • [10] Flocco, C.G., Lobalbo, A., Cabranz a, M.P. & Guilietti, A.M. (2002). Removal of phenol by alfalfa plant s (Medicago sativa L.) grown in hydroponics and its effects on some physiological parameters, Acta Biotechnologica, 22, 1-2, pp. 43-54.
  • [11] Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiology and Biochemistry, 48, 12, pp. 909-930.
  • [12] González, P.S., Ontañon, O.M., Armendariz, A.L., Talano, M.A., Paisio, C.E. & Agostini, E. (2013). Brassica napus hairy roots and rhizobacteria for phenolic compounds removal, Environmental Science and Pollution Research, 20, 3, pp. 1310-1317.
  • [13] Hare, P.D. & Cress, W.A. (1997). Metabolic implications of stress- -induced proline accumulation in plants, Plant Growth Regulation, 21, 2, pp. 79-102.
  • [14] Ibáñez, S.G., Alderete, L.G.S., Medina, M.I. & Agostini, E. (2012). Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response, Environmental Science and Pollution Research, 19, 5, pp. 1555-1562.
  • [15] Jia, L., He, X.Y., Chen, W., Liu, Z.L., Huang, Y.Q. & Yu, S. (2013). Hormesis phenomena under Cd stress in a hyperaccumulator - Lonicera japonica Thunb, Ecotoxicology, 22, 3, pp. 476-485.
  • [16] John, R., Ahmad, P., Gadgil, K. & Sharama, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L, Plant Soil and Environment, 54, 6, pp. 262-270.
  • [17] Jordan, W., Van Barnevel, H., Gerlich, O., Kleine, M. & Ulrico, J. (2002). Ullmann’s Encyclopaedia of Industr ial Chemistry, Wiley-VCH Verlag, New York 2002.
  • [18] Kishor, P.B.K., Sangama, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P. & Sreenivasulu, N. (2005). Regulation of proline biosynthesis degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance, Current Science, 88, 3, pp. 424-438.
  • [19] Kuldeep, B. & Rana, P.S. (2012). Growth, tolerance effi ciency and phytoremediation potential of Ricinus communis L. and Brassica juncea L. in salinity and drought affected cadmium contaminated soil, Ecotoxicology and Environmental Safety, 85, pp. 13-22.
  • [20] Latef, A.A.H.A. & He, C.X. (2011). Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress, Acta Physiologiae Plantarum, 33, 4, pp. 1217-1225.
  • [21] Leslie, S.B., Israeli, E., Lightghart, B., Crowe, J.H. & Crowe, L.M. (1995). Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying, Applied and Environmental Microbiology, 61, 10, pp. 3592-3597.
  • [22] Li, H.S., Sun, Q., Zhao, S.J. & Zhang, W.H. (2000). Principles and techniques of plant physiological biochemical experiment, Higher Education Press, Beijing 2000. (in Chinese)
  • [23] Li, X.N., Yang, Y.L., Jia, L.Y., Chen, H.J. & Wei, X. (2013). Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plant, Ecotoxicology and Environmental Safety, 89, pp. 150-157.
  • [24] Lichtenthaler, H.K. & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochemical Society Transactions, 11, 5, pp. 591-592.
  • [25] Liu, X., Peng, K., Wang, A., Lian, C. & Shen, Z. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration, Chemosphere, 78, 9, pp. 1136-1141.
  • [26] Mehta, S.K. & Gaur, J.P. (1999). Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris, New Phytologist, 143, 2, pp. 253-259.
  • [27] Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, 7, 9, pp. 405-410.
  • [28] Paisio, C., Agostini, E., González, P. & Bertuzzi, M. (2009). Lethal and teratogenic effects of phenol on Bufo arenarum embryos, Journal of Hazardous Materials, 167, 1-3, pp. 64-68.
  • [29] Parlak, K.U. & Yilmaz, D.D. (2013). Ecophysiological tolerance of Lemna gibba L. exposed to cadmium, Ecotoxicology and Environmental Safety, 91, pp. 79-85.
  • [30] Prado, C., Pagano, E., Prado, F. & Rose, M. (2012). Detoxification of Cr (VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes, Journal of Hazardous Materials, 239-240, pp. 355-361.
  • [31] Scebba, F., Sebastiani, L. & Vitagliano, C. (1999). Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: Responses to cold acclimation, Journal of Plant Physiology, 155, 6, pp. 762-768.
  • [32] Sergiev, I., Alexieva, V. & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants, Comptes Rendus de Academie Bulgare des Sciences, 51, 3, pp. 121-124.
  • [33] Singh, S., Melo, J., Eapen, S. & D’Souza, S. (2008). Potential of vetiver (Vetiveria zizanoides (L.) Nash) for phytoremediation of phenol, Ecotoxicology and Environmental Safety, 71, 3, pp. 671-676.
  • [34] Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation, New Phytologist, 125, 1, pp. 27-58.
  • [35] Strzałka, K., Kostecha-Gugała, A. & Latowski, D. (2003). Carotenoids and environmental stress in plants: signifi cance of carotenoid-mediated modulation of membrane physical properties, Russian Journal of Plant Physiology, 50, 2, pp. 168-172.
  • [36] Szabados, L. & Savoure, A. (2010). Proline: a multifunctional amino acid, Trends in Plant Science, 15, 2, pp. 89-97.
  • [37] Tayefi-Nasrabadi, H., Dehfhan, G., Daeihassani, B., Movafegi, A. & Samadi, A. (2011). Some biochemical properties of catalase from safflower (Carthamus tinctorius L. cv. M-cc-190), African Journal of Agricultral Research, 6, 23, pp. 5221-5226.
  • [38] Tripathi, B.N. & Gaur, J.P. (2004). Relationship between copper-and zinc-induced oxidative stress and proline accumulation in Scendesmus sp., Planta, 219, 3, pp. 397-404.
  • [39] Turkan, I., Türkan, İ., Bor, M., Özdemir, F. & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress, Plant Science, 168, 1, pp. 223-231.
  • [40] Wang, Y.B., Yan, A.L., Dai, J., Wang, N.N. & Wu, D. (2012). Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and protential Cd hyperaccumulator, Environmental Monitoring and Assess, 184, 2, pp. 929-937.
  • [41] Wright, H. & Nicell, J.A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols, Bioresource Technology, 70, 1, pp. 69 -79.
  • [42] Xu, Z.S., Lin, Y.Q., Xu, J., Zhu, B., Zhao, W., Peng, R.H. & Yao, Q.H. (2013). Selective detoxification of phenols by Pichia pastoris and Arabidopsis thaliana heterologously expressing the PtUG72B1 from populus trichocarpa, Plos one, 8, 6, e66878. Doi: 10.1371/journsl. pron. 0066878.
  • [43] Yang, Z.Y., Qin, M.J. & Qian, S.H. (2008). Advances in study on Polygonum orientale L., Chinese Wild Plant Resource, 27, 1, pp. 11-15. (in Chinese) Yu, D., Ruan, W.Q., Zou, H. & Yan, Q. (2007). Study on phenol wastewater in anaerobic system, Journal of Food Science and Biotechnology, 26, 5, pp. 84-87. (in Chinese)
  • [44] Zhang, Q., Zhang, J.Z., Chow, W.S., Sun, L.L., Chen, J.W., Peng, Y. & Chen, L.C. (2011). The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars, Photosynthetica, 49, 2, pp. 201-208.
  • [45] Zhou, Q. (2001). The measurement of malondialdehyde in plants, in: Mehtods in plant physiology, Zhou, Q. (Ed.), pp. 173-174, China Agricultural Press, Beijing 2001. (in Chinese)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ed12ae-e981-4013-951e-ba4d2ffb3242
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.