PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Specific features of sorption kinetics of heavy metal ions with polysaccharide materials from aqueous media

Identyfikatory
Warianty tytułu
PL
Charakterystyczne cechy kinetyki sorpcji jonów metali ciężkich z materiałami polisacharydowymi z wodnych środowisk
Języki publikacji
EN
Abstrakty
EN
An investigation of sorption kinetics of heavy metal ions on polysaccharide materials has been performed. Traditionally, kinetic study of ion exchange sorption begins with a determination of the slowest stage of the proces, but the stage of chemical reaction between heavy metal ions and the sorbent functional groups can also make essential contribution. Results of kinetic studies were treated using different kinetic models and, experimental data are described most adequately with pseudo-second order kinetic model. It is determined that polysaccharide materials used in the studies have relatively good kinetic characteristics.
PL
Przeprowadzono badania kinetyki sorpcji jonów metali ciężkich na materiałach polisacharydowych. Tradycyjnie badanie kinetyczne sorpcji jonowymiennej rozpoczyna się od określenia najwolniejszego etapu procesu, ale stan reakcji chemicznej pomiędzy jonami metali ciężkich a sorbentowymi grupami funkcyjnymi może mieć również istotny udział. Wyniki badań kinetycznych opisano różnymi modelami kinetycznymi, a najlepsze dopasowanie z danymi eksperymentalnymi uzyskano dla modelu kinetycznego reakcji pseudo drugiego rzędu. Ustalono, że materiały polisacharydowe stosowane w badaniach mają stosunkowo dobre właściwości kinetyczne.
Słowa kluczowe
Rocznik
Strony
163--183
Opis fizyczny
Bibliogr. 52 poz., wz., tab., wykr.
Twórcy
  • Food Products and Biotechnology Department, Organic Chemistry and Technology Faculty, Ivanovo State University of Chemistry and Technology
autor
  • Machines and Equipment for Chemical Industry Department, Chemical Engineering and Cybernetics Faculty, Ivanovo State University of Chemistry and Technology
autor
  • Chemistry and Technology of High Molecular Compounds Department, Organic Chemistry and Technology Faculty, Ivanovo State University of Chemistry and Technology
Bibliografia
  • [1] Zhao G., W.X., Tan X., Wang X., Sorption of heavy metal ions from aqueous solutions: a review, The Open Colloid Sci J, Vol. 4, 2011, 19–31.
  • [2] Baral S.S., Das S.N., Rath P., Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochem Eng J, Vol. 31, 2006, 216–222.
  • [3] Ho Y.S., Ng J.C.Y., McKay G., Pseudo-second order model for sorption processes, Process Biochemistry, Vol. 34(5), 1999, 451–465.
  • [4] Ho Y.S., Ng J.C.Y., McKay G., Kinetics of pollutant sorption by biosorbents: Review, Separation and Purification Methods, Vol. 29(2), 2000, 189–232.
  • [5] Aydin H., Bulut Y., Yerlikaya C., Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, J Environ Management, Vol. 87, 2008, 37–45.
  • [6] Sağ Y., Aktay Y., Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochemistry, Vol. 36, 2000, 157–173.
  • [7] Ho Y.S., Ng J.C.Y., McKay G., Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res, Vol. 40, 2006, 119–125.
  • [8] Sharma R.K., Synthesis and characterization of graft copolymers of N-Vinyl-2-Pyrrolidone onto guar gum for sorption of Fe(II) and Cr(VI) ions, Carbohydrate Polymers, Vol. 83, 2011, 29–36.
  • [9] Ho Y.S., McKay G. Pseudo-second order model for sorption processes, Process Biochemistry, 34, 1999, 451–465.
  • [10] Farooq U., Kozinski J.A., Khan M.A., Athar M., Biosorption of heavy metal ions using wheat based biosorbents – A review of recent literature, Bioresource Technology, Vol. 101, 2010, 5043–5053.
  • [11] Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: review, Separ Purif Methods, Vol. 20(2), 2000, 189–232.
  • [12] Argun M.E., Dursun S., Ozdemir C., Karatas M., Heavy metal adsorption by oak sawdust: thermodynamics and kinetics, J Hazard Mater, Vol. 141, 2007, 77–85.
  • [13] Arshad M., Zafar M.N., Younis S., Nadeem R., The use of neem biomass for the biosorption of zinc from aqueous solutions, J Hazard Mater, Vol. 157, 2008, 534–540.
  • [14] Garg V.K., Gupta R., Kumar R., Gupta R.K., Adsorption of chromium from aqueous solution on treated sawdust, Bioresour Technol, Vol. 92(1), 2004, 79–81.
  • [15] Hanif M.A., Nadeem R., Zafar M.N., Aktar K., Bhatti H.N., Nikel (II) biosorption by Casia fistula biomass, J Hazard Mater, Vol. 139(2), 2007, 345–355.
  • [16] Saeed A., Akhter M.W., Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbents, Sep Purif Technol, Vol. 45(1), 2005, 25–31.
  • [17] Min S.H., Han J.S., Shin E.W., Park J.K., Improvement of cadmium ion removal by base treated juniper fiber, Water Res, Vol. 38(5), 2004, 1289–1295.
  • [18] Chakravarty S., Pimple S., Hema S., Chaturvedi T., Singh S., Gupta K.K., Removal of copper from aqueous solution using newspaper pulp as an adsorbent, J Hazard Mater, Vol. 159(2), 2008, 396–403.
  • [19] Zheng L.S., Dang Z., Yi X.Y., Zhang H. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk, J Hazard Mater, Vol. 176(1–3), 2010, 650–656.
  • [20] Ghodbane I., Hamdaoui O., Removal of mercury (II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies, J Hazard Mater, Vol. 160(2–3), 2008, 301–309.
  • [21] Ghodbane I., Nouri L., Hamdaoui O., Chiha M., Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark, J Hazard Mater, Vol. 152(1), 2007, 148–158.
  • [22] Lohani M.B., Singh A., Rupainwar D.C., Dhar D.N., Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg(II) from aqueous solutions, J Hazard Mater, Vol. 159(2–3), 2008, 626–629.
  • [23] King P., Srinivasa P., Kumar Y.P., Prasad V.S.K.R., Sorption of copper (II) ion from aqueous solution by Techtona grandis L.F. (teak leaves powder), J Hazard Mater, Vol. 136(3), 2006, 560–566.
  • [24] Rao K.S., Anand S., Venkateswarlu P., Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis L.F. (teak leaves powder), BioResources, Vol. 5(1), 2010, 438–454.
  • [25] Ngah W.S.W., Hanafiah M.A.K.M., Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem Eng J, Vol. 39(3), 2008, 521–530.
  • [26] Ngah W.S.W., Hanafiah M.A.K.M., Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaf powder: kinetics, isoterm, and biosorption mechanisms, J Environ Sci –China, Vol. 20(10), 2008, 1168–1176.
  • [27] Qaizer S., Saleem A.R., Ahmad M.M., Heavy metal uptake by agro based waste materials. Environ, Biotechnol, Vol. 10, 2007, 409–416.
  • [28] Malkoc E., Ni(II) removal from aqueous solutions using cone biomass of Thuia orientalis, J Hazard Mater, Vol. 137(2), 2006, 899–908.
  • [29] Bulut Y., Tez Z., Adsorption studies on ground shells of hazelnut and almond, J Hazard Mater, Vol. 149(1), 2007, 35–41.
  • [30] Malkoc E., Nuhoglu Y., Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn Quercus ithaburensis, Chem Eng Processing, Vol. 46(10), 2007, 1020–1029.
  • [31] Ofomaja A.E., Ho Y.S., Effect of pH on cadmium biosorption by coconut copra meal, J Hazard Mater, Vol. 139(2), 2007, 356–362.
  • [32] Parab H., Joshi S., Shenoy N., Lali A., Sarma U.S., Sudersanan M., Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith, Process Biochem, Vol. 41(3), 2006, 609–615.
  • [33] Saeed A., Iqbal M., Holl W.H., Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk, J Hazard Mater, Vol. 168(2-3), 2009, 1467–1475.
  • [34] Altundogan H.S., Arslan N.E., Tumen F. Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid, J Hazard Mater, Vol. 149(2), 2007, 432–439.
  • [35] Klemm D., Philipp B., Heinze D., Heinze U., Wagenknecht W., Comprehensive Cellulose Chemistry, Vol. 1: Fundamentals and Analytical Methods, Weinheim, Wiley-WCH, Germany 1998.
  • [36] Cellulose and Cellulose Derivatives, Eds: N.M. Bikales, L. Segal, Wiley, New York 1971.
  • [37] Bismark A., Aranberri-Askargorta I., Springer J., Surface Characterization of Flax, Hemp and Cellulose Fibers, Surface Properties and the Water Uptake Behavior, Polymer composites 2002, Vol. 23(5): 872–894.
  • [38] Bos, Harriëtte L., The potential of flax fibres as reinforcement for composite materials, Technische Universiteit Eindhoven, Eindhoven 2004.
  • [39] Shulga G., Betkers T., Shakels V., Neiberte B., Verovkins A., Brovkina J., Belous O., Ambrazaitene D., Žukauskaite A., Lignocellulosic mulch, polycomplex, soil, BioResources, Vol. 2(4), 2007, 572–582.
  • [40] Kays S.J., Nottingham S.E., Biology and chemistry of Jerusalem artichoke, Helianthus tuberosus L., CRC Press. Taylor & Francis Group LLC, USA 2008.
  • [41] Stevenson L., Phillips F., O’sullivan K., Walton J., Wheat bran: its composition and benefits to health, a European perspective, International Journal of Food Sciences and Nutrition, Vol. 63(8), 2012, 1001–1013.
  • [42] Karr-Lilienthal L.K., Grieshop C.M., Merchen N.R., Mahan D.C., Fahey G.C. Jr., Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries, J Agric Food Chem, Vol. 52(20), 2004, 6193–6199.
  • [43] Sjőstrőm E., Alѐn R., Analytical methods in wood chemistry, pulping and processing, Springer – Verlag Berlin Heidelberg, 1999.
  • [44] Nikiforova T.E., Kozlov V.A., A mechanism of extraction of heavy metal ions from aqueous solutions by chemically modified cellulose, Prot Met Phys Chem Surf, Vol. 48(6), 2012, 527–534.
  • [45] Kocherbitov V., Ulvenlund S., Kober M., Jarring K., Arnebrant T., Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry, J Phys Chem B, Vol. 112(12), 2008, 3728–3734.
  • [46] Krässig H.A., Cellulose: structure, accessibility and reactivity Polymer monographs, V. 11. 1993, Gordon and Breach Science Publishers.
  • [47] NikiforovaT.E., Kozlov V.A., Various factors affecting heavy metal ion sorption from aqueous media by sorbent containing cellulose, Prot Met Phys Chem Surf, Vol. 47(1), 2011, 20–24.
  • [48] Nikonorov V.V., Ivanov R.V., Kil’deeva N.R., Lozinskii V.I., Effect of polymer precursor molecular mass on the formation and properties of covalently cross-linked chitosan cryogels, Polymer Science Ser A, Vol. 53(12), 2011, 1150–1158.
  • [49] Albert A., Sergeant E., Ionization Constants of Acids and Bases, Wiley, New York 1962, 179 р.
  • [50] Stavitskaya S.S., Mironyuk T.I., Kartel’ N.T., Strelko V.V., Sorption characteristics of “food fibers” in secondary products of processing of vegetable raw materials, Russian J Appl Chem,, Vol. 74(4), 2001, 592–595.
  • [51] Mann J., Modern methods of determining crystallinity in cellulose, Pure Appl Chem, 5(1–2), 1962, 91–106.
  • [52] Febrianto J., Kosasih A.N., Sunarso J., Ju Y.-H., Indraswati N., Ismadji S., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J Hazard Mater, Vol. 162, 2009, 616–645.
Uwagi
EN
Section "Mechanics"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83e0f339-39f9-43e1-991a-620e7b35a3c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.