PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of I-section profile design by the finite element method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the problem of design optimization for an I-section profile. The optimization process was performed using the Abaqus program. The numerical analysis of a strictly static problem was based on the finite element method. The scope of the analysis involved both determination of stresses and displacements in the profile and structure topology optimization. The main focus of the numerical analysis was put on reducing profile volume while maintaining the same load and similar stresses prior to and after optimization. The solution of the optimization problem is just an example of the potential of using this method in combination with the finite element method in the Abaqus environment. Nowadays numerical analysis is the most effective cost-reducing alternative to experimental tests and it enables structure examination by means of a computer.
Słowa kluczowe
Twórcy
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Arjmandi H.R., Amani E.: A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber. Energy, 2015, vol. 81, 706–718.
  • 2. Azadi R., Rostamiyan Y.: Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization. Construction and Building Materials, 2015, vol. 88, 212–224.
  • 3. Huang B., Kanemoto T.: Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renewable Energy, 2015, vol. 81, 837–844.
  • 4. Kundu B., Barman D.: An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions. Energy, 2011, vol. 36, 2572–2588.
  • 5. Lonkwic P., Różyło P., Dębski H.: Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodność – Maintenance and Reliability, 2015, 17(4), 544–550.
  • 6. Markus D., Ferri F., Wüchner R., Frigaard P.B., Bletzinger K.-U.: Complementary numerical-experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces. Computers & Fluids, 2015, vol. 118, 69–88.
  • 7. Najafia A.R., Safdaric M.D.A., Tortorellia D.A., Geubellec P.H.: A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Computer Methods in Applied Mechanics and Engineering, 2015, vol. 296, 1–17.
  • 8. Wang J., Lan S., Chen T., Li W., Chu H.: Numerical simulation and combination optimization of aluminum holding furnace linings based on simulated annealing. Chinese Journal of Chemical Engineering, 2015, vol. 23, 880–889.
  • 9. Wang W., Clausen P.M., Bletzinger K.-U.: Improved semi-analytical sensitivity analysis using a secant stiffness matrix for geometric nonlinear shape optimization. Computers and Structures, 2105, vol. 146, 143–151.
  • 10. Zienkiewicz O.C., Taylor R.L.: Finite Element Method (5th Edition) Volume 2 – Solid Mecha-nics, 2000, Elsevier.
  • 11. Abaqus HTML Documentation.
  • 12. Material properties, http://www.splav-kharkov. com/en/e_mat_start.php?name_id=881.
  • 13. Source from the website as an example topology optimization process, http://djy4v7w60ym8o. cloudfront.net/wp-content/uploads/2014/04/Airbus-3D-printed-bracket-615x411.jpg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83e0c3d7-2ced-4201-8e21-75bd831a319f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.