PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving crashworthiness by damping vibrations in cfrp composite structures using carbon nanotubes springs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon nanotubes have tensile strength approximately 30 times higher than the conventional steel. Moreover theoretically these CNT moulded into springs can store potentially 1000 times more energy than steel. Carbon nanotubes have excellent damping characteristics, which is possibly due to interfacial friction between the carbon nanotubes and the polymer resins and also because of large surface area over given specific mass. There applications are still far from reality. But here in this paper I will try to bring the CNT springs to a new application to improve the crashworthiness of a car may it be a formula one or a supercar whose chassis is moulded out of Carbon Fiber Reinforced Plastic (CFRP). These springs combined with piezoelectric substance can give tremendous improvement in driver’s safety during collisions. Here I have tried to combine the mechanical strength of Carbon nanotube with best suitable piezoelectric material to derive a new property which will transform impact energy into electrical energy and hence utilize it for driver’s protection. In the paper I have studied various piezoelectric materials, their bonding and behaviour with carbon atoms. I have tried to generate a possible stable structure theoretically which can withstand high impact as well as generate enough potential energy for driver to be safe during the impact.
Twórcy
autor
  • Manipal Institute of Technology Department of Mechanical Engineering Madhav Nagar, Manipal-576104 tel.: 91 9844943862, 91 522 2732407 (Home), fax: 91 820 2571071
Bibliografia
  • [1] Car crash photos, courtesy, ESPN Sports, 2013.
  • [2] Lin, R. M., Lu, C., Modeling of Interfacial Friction Damping of Carbon Nanotube-Based Nanocomposites, Mechanical Systems and Signal Processing, Vol. 24, Iss. 8, pp. 2996-3012, 2010.
  • [3] Prashanthi, K., Miriyala, N., Gaikwad, R. D., Moussa, W., Ramgopal Rao, V., Thundat, T., Vibrational Energy Harvesting Using Photo-Patternable Piezoelectric Nanocomposite Cantilevers, available online 27 March 2013, in Press, corrected proof.
  • [4] Otieno, G., Koos, A. A., Dillon, F., Wallwork, A., Grobert, N. Todd, R. I., Processing and Properties of Aligned Multi-Walled Carbon Nanotube/Aluminoborosilicate Glass Composites Made by Sol-Gel Processing, Carbon, Vol. 48, Iss. 8, pp. 2212-2217, 2010.
  • [5] Bell, D. J., Sun, Y., Zhang, L., Dong, L. X., Nelson, B. J., Grützmacher, D., Three-Dimensional Nanosprings for Electromechanical Sensors, Sensors and Actuators A: Physical, Vol. 130-131, pp. 54-61, 2006.
  • [6] Zhang, C. H., Hu, Z., Gao, G., Zhao, S., Huang, Y. D., Damping Behavior and Acoustic Performance of Polyurethane/Lead Zirconate Titanate Ceramic Composites, Materials and Design, Vol. 46, pp. 503-510, 2013.
  • [7] Chowdhury, R., Adhikari, S., Scarpa, F., Elasticity and Piezoelectricity of Zinc Oxide Nanostructure, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 42, Iss. 8, pp. 2036-2040, 2010.
  • [8] Zhao, J., He, M.-R., Dai, S., Huang, J.-Q., Wei, F., Zhu, J., TEM Observations of Buckling and Fracture Modes for Compressed Thick Multiwall Carbon Nanotubes, Carbon, Vol. 49, Iss. 1, pp. 206-213, 2011.
  • [9] Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., Yin, H. L., Advances in Three-Dimensional Nanofibrous Macrostructures via Electrospinning, Progress in Polymer Science, available online 9 June 2013.
  • [10] Hajnayeb, A., Khadem, S. E., Nonlinear Vibration and Stability Analysis of a Double-Walled Carbon Nanotube Under Electrostatic Actuation, Journal of Sound and Vibration, Vol. 331, Iss. 10, pp. 2443-2456, 2012.
  • [11] Shen, H.-S. Xiang, Y., Postbuckling of Nanotube-Reinforced Composite Cylindrical Shells Under Combined Axial and Radial Mechanical Loads in Thermal Environment, Composites Part B: Engineering, Vol. 52, pp. 311-322, 2013.
  • [12] Utschig, T., Schwarz, M., Miehe, G., Kroke, E., Synthesis of Carbon Nanotubes by Detonation of 2,4,6-triazido-1,3,5-triazine in the Presence of Transition Metals, Carbon, Vol. 42, Is. 4, pp. 823-828, 2004.
  • [13] Kiani, K., Vibration Analysis of Elastically Restrained Double-Walled Carbon Nanotubes on Elastic Foundation Subjected to Axial Load Using Nonlocal Shear Deformable Beam Theories, International Journal of Mechanical Sciences, Vol. 68, pp. 16-34, 2013.
  • [14] Yang, H. K., Wang, X., Torsional Buckling of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium, Composite Structures, Vol. 77, Iss. 2, pp. 182-192, 2007.
  • [15] Mohammadi, M. R., Tabei, S. A., Nemati, A., Eder, D.,. Pradeep, T, Synthesis and Crystallization of Lead-Zirconium-Titanate (PZT) Nanotubes at the Low Temperature Using Carbon Nanotubes (CNTs) as Sacrificial Templates, Advanced Powder Technology, Vol. 23, Is. 5, pp. 647-654, 2012.
  • [16] Hill, F. A., Mechanical Energy Storage in Carbon Nanotube Springs, Archives of Massachusetts Institute of Technology, November 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83e0838f-5c08-4820-b7f0-dfba7e16bf9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.