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Optimum location of last-mined stope with the
influence of backfilling

Huawei Xu, Derek B. Apel*

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada

Abstract

Many mines in Canada have adopted sublevel stoping method or one of its variations, such as blasthole stoping (BHS)
and sublevel longhole retreat (SLR), for the extraction of steeply dipping orebodies. Stope, as the basic excavated
element, plays a significant role in the whole process of mining activity. In the mining method of BHS, crossing cuts are
excavated at tops and bottoms in each stope for drilling blast holes and transportation of mined out orebodies. Crossing
cuts failure may result in prolonged production interruption, fatality, and equipment loss. After the completion of
orebodies excavation from the sublevel open stope, the void stopes will be backfilled with cemented rockfill (CRF) for
secondary stopes. The strength of the CRF affects the stability of the adjacent crossing cuts for the next excavation
scheme. Rational location of the last mined stope can effectively eliminate the instability of crossing cuts. By using the
Finite Element Method (FEM) such as Abaqus codes in this study, this paper presents the comparison of floor heaves,
roof displacements, and sidewall swellings of the crossing cuts in each stopes of different location scenarios. The nu-
merical simulation shows that the central stope location of the level is the optimum one for the last mined stope.

Keywords: backfill, sublevel stoping method, numerical modelling

1. Introduction

S topes, as the basic excavation element of
sublevel open stoping mining method in

underground mining, play key role in the whole
production process. Mathews [1] initially pro-
posed stability graph to predict the open-stope
stability, and this method based on a limited
number of cases. Chen [2] showed that the stope
height was the critical design parameter. Bai [3]
presented a new algorithm to optimize stope
design for the sublevel stoping mining method
with two parameters: (i) the maximum distance of
a block from the raise and (ii) the horizontal width
required to bring the farthest block to the raise.
Cai [4] assumed tensile cracking as the dominant
fracture mechanism for brittle rocks under
compressive pressure. Diederichs [5] explored the
influence of residual tensile strength and bound-
ary parallel relaxation on the failure process by

using crack and rock-bridge analogues, and
updated the empirical stability assessment tech-
niques for underground tunnels and for mining
stopes. Martin [6] provided examples to illustrate
how the philosophy of observational design
method can be used to infer the in situ stress
state. Zhang [7] presented that previous beneath
mining activities significantly affected the stability
of stope walls by the method based on yield zone
distribution. Cepuritis [8] back-analyzed hanging
wall over-break data from longhole open stopes,
and established global relationships between ve-
locity and plastic strain and marked increases in
over-break. Idris [9e11] studied the stability of
open stopes considering the variability in the rock
mass properties and divided rock mass into six
strength classes. Cai [12] presented a systematic
assessment of uncertainty in rock mass charac-
terization in rock engineering. Kurlenya [13]
presented the estimation of stability of stopes in
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the bottom-up slice mining by modelling the
stress-strain state and in situ observations. Urli
[14] presented the ore-skin design approach, and
showed that the minimum ore-skin thickness
required depends on the quality of governed rock
mass and could be a function of stope lifetime.
Heidarzadeh [15] evaluated the individual and
interactive effects of open stope geometrical pa-
rameters related to brittle damage of the sur-
rounding rock mass. (see Table 1)
For stope stability assessment, many works were

done on displacement prediction, mining induced
stress assessment, protect supporting design. While
the location optimization of the last-mined stope
was rarely discussed, especially with the influence
of the CRF backfilling mining method. The location
of the last-mined stope plays a key role in mining
safety and resource recovery rate in each level.
Rational location of the last-mined stope can not
only improve the resource recovery rate but also
with lower instability of overcuts and undercuts. In
this paper, the influence of the CRF backfilling is
considered to optimize the location of the last mined
stope.

2. Materials and methods

BHS mining method includes two sublevels and
amount of preparation of the stopes before pro-
duction commence. One sublevel is on the top of the
stope, it is for drilling (overcut), and another is at the
bottom of the stope, it is for production (undercut).
Hustrulid [16] classified the features of the mines
which apply BHS mining method, and the features
are: i) host rock and orebody are competent, ii)
orebody dip is steep, iii) boundaries of orebody are
regular. For most of the hard rock mines in Canada,
the orebody blocks are usually steeply inclined. The
mine chosen as the case in this paper has the above
features.

2.1. Numerical modelling establishment

Referring to the works of Jing [17, 18], Hart [19],
Wiles [20] and Cai [21], the numerical analysis can
assist in simulation of forced conditions on the rock
mass and its response behaviors; this brings the
advantage of predicting possible failures by identi-
fying the observed mechanisms that governs failure
in similar conditions. Numerical modeling plays
a great role in the design and assessment of the rock
mass behavior. FEM is perhaps the most widely
applied numerical method in engineering today
because of its flexibility in handling material

heterogeneity, non-linearity and complicated
boundary conditions and dynamic problems, with
many well developed and verified commercial
codes with large capacities in terms of computing
power, material complexity and user-friendliness,
Sun [22].
In this study, the hard rock mine transferred from

open pit mining to underground mining. There are
two open pits, namely Op1 and Op2. Under Op2,
there are two orebody zones, namely Ore-zone-1
and Ore-zone-2. In order to better simulate the
mining process, despite the focus is the Op2, the
Op1 is also included in the model to capture the
possible impacts of its geometry on the mining-
induced stress field. This makes the model domain:
2200� 2200� 800m (length�width� depth). This
size of domain eliminates the influence of bound-
aries on the model.
The analysis of mining induced stress field in this

paper is global to local, firstly a full size 3D nu-
merical model was created, and then the stress filed
of the researched level is extracted and applied to
the simplified 2D model. In the full size 3D nu-
merical model, the ten-node quadratic tetrahedron
mesh element (C3D10) [23]was used to conduct the
simulation and achieve better results of the mining-
induced redistributed stress. For the simplified 2D
model, the four-node bilinear plane quadrilateral
mesh element (CPE4R) [23] was used. Since the
acceptable constitutive model failure criteria in
Abaqus for rock is the Mohr-Coulomb failure
criteria [23], then both the 2D and 3D models use the
Mohr-Coulomb failure criteria for the simulation
calculation. The researched zone in this paper lo-
cates in Ore-zone-2. As shown in Fig. 1, there are
seven levels and one sill pillar in Ore-zone-2. The
heights of the stope in each level are the same, and it
is 25m, and the width is 7m. Also, the height of the
sill pillar is 20m. As for the overcuts and undercuts

Fig. 1. Modelled Ore-zone-2 and modelled level.
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in each level, the height is 5m and the width is same
with the width of stope. One mining level, #105, is
selected to study the topic. There are twenty one
stopes in level #105. Fig. 1 shows the outline of Ore-
zone-2 and level #105.

2.2. Mechanics properties of modelled rock and
backfilling CRF

Table 1 shows the material properties used in the
model [24]. Here, g is the unit weight, C is the
cohesive strength, f is the angle of friction, E is the
elastic Young's modulus, n is the Poisson's ratio, st is
the tensile strength and sc is the maximum uniaxial
compressive strength.
The following Fig. 2, Fig. 3 and Fig. 4 show the

two dimensional numerical model of the level

#105. The 2D model has a size of 100� 147m
(height�width). Dark green represents the
kimberlite orebody, and the white is the backfilled
CRF. Above the level #105, it is 25 m thick
kimberlite orebody, and below the level #105 it is
50m thick kimberlite orebody.
Following Fig. 2 shows three representative loca-

tions of the last mined stope in the level. Location 1
means that the last mined stope is at the very right
side of the level. Location 21 means the last mined
stope is at the very left side of the level. During the
simulation process, the location of the last mined
stope changes the location from location 1 to loca-
tion 21. Location 11 means that the last mined stope
is in the middle of the level. The void area in the
figure is the overcut.

Table 1. Material properties.

Rock Mass g (MN/m3) C (MPa) f (�) E (GPa) n st (MPa) sc (MPa)

Ore Zone 1 0.024 4.2 26.4 18.7 0.26 3.4 66
Ore Zone 2 0.024 4.7 28.1 19.6 0.24 3.7 79
Backfilling CRF 0.022 1.2 35 2 0.3 0 1.5
Granite 0.026 9.3 45 24 0.3 0 130

Fig. 2. Representative location with overcut of Scenario 1 (S1).

Fig. 3. Representative location with undercut of Scenario 2 (S2).

Fig. 4. Representative location with overcut and undercut of Scenario 3 (S3).
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Fig. 3 presents the locations of the undercut in
each stope. The simulation process begins from the
location 1 and ends at location 21. The void area at
the bottom of the stope is the undercut.
Fig. 4 shows the location of last mined stope with

both overcut and undercut. S3 has the same simu-
lation process with S1 and S2. All three scenarios
have the same boundaries condition, also the same
stress condition fields are applied to the three
scenarios.

3. Results and discussion

From the overcut and undercut layout, eight lo-
cations are selected for the comparison. The node 1
and node 3 represent the roof corners of the overcut
and undercut, node 2 and node 6 are the middle
point of the roof and floor respectively. Node 4 and
node 8 are the middle points of both sidewalls, and
node 5 and node 7 are the floor corners, as shown in
Fig. 5. Similarly, the locations chosen from the un-
dercut also marked with eight nodes. The
displacement of these eight locations are significant
factors to indicate the safety of the crosscuts.

3.1. Displacement of chosen location in overcut

Fig. 6 shows the displacement of node 1 and node
3 of the overcut in both S1 and S3. In both scenarios,
the displacement of the overcut corners is less than
5 cm.
From Fig. 6, there is no significant difference

among different location scenarios of the last mined
stope. Each location of last mined stope has small
and similar displacement even S3 has undercut at

Fig. 5. Chosen comparison location in overcut.

Fig. 6. Overcut displacement at Node-1, 3 of S1 and S3.
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the bottom of the stope while S1 only has the
overcut.
Fig. 7 presents the displacement of the middle

point of roof and floor. In both scenarios, the
displacement of the roof is small, as shown of the
node 2. For the heave of the floor center, it is larger
than the displacement of the roof center when the
location of the last mined stope is away from the
center axis of the level. Both the two corners and
middle point of the roof has almost the same
displacement. While for the locations around the
center axis, the displacement of the roof center is
larger than the heave of the floor center. For the
heave of the floor, from each side to the center of the
level, the displacement decreases gradually for both

S1 and S3, and the floor center heave at the location
11 is the minimum one.
Fig. 8 shows the sidewall swellings. Similar with

the change trend of roof displacement and floor
heave, the central location of the level has the
minimum sidewall swellings. At the same location
of the last mined stope of S1 and S3, the swelling in
S3 is larger than that in S1. While the swelling of the
sidewall middle in S1 and S3 present different
trend. In S1, the right sidewall has larger swellings,
while in S3, the left sidewall has the larger swellings,
which means the existence of undercut in S3 has
influence on the sidewall swellings of overcut.
As shown in above Fig. 9, the heave of the two

floor corners at the same location of the level is

Fig. 7. Overcut displacement at Node-2, 6 of S1 and S3.

Fig. 8. Overcut displacement at Node-4, 8 of S1 and S3.
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almost the same and most of them is less than 10 cm.
From the side to the center of the level the heave of
the floor corners decrease gradually and the central
location has the minimum value of the floor heave.
The floor corners heave of the overcut in S3 is little
bit large than that in S1 except the location at the
very side boundaries.

3.2. Displacement of chosen location in undercut

Comparison of the displacement at node 1 and
node 3 in the undercut in both S2 and S3 show the
same trend. Different with the change trend in the
overcut in S1 and S3, the displacement of node1 and
node3 in undercut decreases from the side

boundaries to the center of the level, as shown in
Figs. 6 and 10. The displacement of the node1 and
node3 in the undercut is more sensitive to the in-
fluence of the backfilled CRF and the location of the
last mined stope.
As shown in Fig. 11, for the displacement of node

2 and heave of node 6 in the undercut in S2 and S3,
in both scenarios, the heave of node6 is tiny
compared with the displacement of node2. The
displacement of roof is more obvious than the heave
of the floor in the undercut. Different with the
change trend of the displacement of roof, the heave
of the floor increases from the side boundaries to
the central location of the level, even the floor heave
is less than 3 cm. Then the displacement of the roof

Fig. 9. Overcut displacement at Node-5, 7 of S1 and S3.

Fig. 10. Undercut displacement at Node-1, 3 of S2 and S3.
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is an indication factor that more reliable than the
heave of the floor in the undercuts.
Fig. 12 shows the sidewall swellings in the

undercut of S2 and S3. Compared with the
swellings of the right sidewall, the swellings of
the left sidewall presents a different trend even
the sidewall swellings is very small. According to
Figs. 8 and 12, the sidewall swelling of the left

sidewall in the overcut is larger than that of the
undercut, while the change trend of the left
sidewall swelling in undercut is sharper than that
in the overcut.
For the floor corner heave, Fig. 13 shows that in

the undercut in both S2 and S3. Different with the
situations in the overcut shown in Fig. 9, the floor
corner heave in the undercut is tiny, and there is no

Fig. 11. Undercut displacement at Node-2, 6 of S2 and S3.

Fig. 12. Undercut displacement at Node-4, 8 of S2 and S3.
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obvious difference among different location sce-
narios of the last mined stope.

4. Conclusions

Compared with undercut, the displacement of the
roof corners in overcut is smaller, which means the
roof in the overcut is more stable than that in un-
dercut. As for the displacement of the roof middle in
the overcut, there is no obvious difference in sce-
narios of S1 and S3, and the heave of the floor
middle is larger than the displacement of the roof
middle.
Different with the overcut, the floor middle heave

in undercut is tiny, which means the floor in the
undercut is more stable than the floor in overcut, as
well the floor corners.
Due to the fact that the sidewalls in both un-

dercuts and overcuts is the backfilled CRF and the
strength of the CRF is lower than the kimberlite
strength, then the supporting system of sidewalls
should be stronger than that of the roofs in order to
improve the safety of the working areas in both
overcuts and undercuts.
In overcuts, more attention of supporting should

be paid on the roof than on the floor. While in the
undercuts, more attention should be paid on the
floor than on the roof. Based on the above conclu-
sions, the optimum location of the last mined stope
is the central area of the level. In this case, the
location scenario 10, 11 and 12 can be the location
for the last-mined stope.
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