PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Is the biochar produced from sewage sludge a good quality solid fuel?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of sewage sludge torrefaction temperature on fuel properties was investigated. Non-lignocellulosic waste thermal treatment experiment was conducted within 1 h residence time, under the following temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as lignocellulosic reference material. The following parameters of biochar have been measured: moisture, higher heating value, ash content, volatile compounds and sulfur content. Sawdust biochar has been confirmed to be a good quality solid fuel. High ash and sulfur content may be an obstacle for biochar energy reuse. The best temperature profile for sawdust torrefaction and fuel production for 1 h residence time was 220°C. At this temperature the product contained 84% of initial energy while decreased the mass by 25%. The best temperature profile for sewage sludge was 240°C. The energy residue was 91% and the mass residue was 85%. Higher temperatures in both cases caused excessive mass and energy losses.
Słowa kluczowe
Rocznik
Strony
125--134
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
  • Wrocław University of Environmental and Life Sciences, Poland, Institute of Agricultural Engineering, Faculty of Life Sciences and Technology
  • University of Warmia and Mazury, Poland, The Faculty of Technical Sciences
  • University of Warmia and Mazury, Poland, Research Center for Renewable Energy
  • Wrocław University of Environmental and Life Sciences, Poland, Institute of Agricultural Engineering, Faculty of Life Sciences and Technology
Bibliografia
  • [1]. Atienza-Martínez, M., Fonts, I., Ábrego, J., Ceamanos, J. & Gea, G. (2013). Sewage sludge torrefaction in a fluidized bed reactor, Chemical Engineering Journal, 222,15, pp. 534-545.
  • [2]. Bergman, P.C.A. & Kiel, J.H.A. (2005). Torrefaction for biomass upgrading, Published at 14th European Biomass Conference & Exhibition, Paris, France , 17-21 October 2005.
  • [3]. Bergman, P.C.A. (2005).Combined torrefaction and pelletisation - the TOP process, ECN Report, ECN-C-05-073.
  • [4]. Bień, J. & Nowak, D. (2014). biological composition of sewage sludge in the aspect of threats to the natural environment, Archives of Environmental Protection, 40, 4, pp. 79-86.
  • [5]. Bridgeman, T.G., Jones, J.M., Shield, I. & Williams, P.T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties, Fuel, 87, pp. 844-856.
  • [6]. Bridgeman, T.G., Jones, J.M., Williams, A. & Waldron, D.J. (2010). An investigation of the grindability of two torrefied energy crops, Fuel, 89, pp. 3911-3918.
  • [7]. Ciolkosz, D. & Wallace, R. (2011). A review of torrefaction for bioenergy feedstock production, Biofuels, Bioproducts and Biorefining, 5, pp. 317-329.
  • [8]. Dhungana, A. (2012). Torrefaction of biomass, submitted in partial fulfilment of the requirements for the degree of Master of Applied Science, Dalhousie University 2012.
  • [9]. Eseltine, D., Sankar Thanapal, S., Annamalai, K. & Ranjan, D. (2013). Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases, Fuel, 113, pp. 379-388.
  • [10]. Fisher, E.M., Dupont, C., Darvell, L.I., Commandré, J-M., Saddawi, A., Jones, J.M., Grateaub, M., Nocquetb, T. & Salvadore, S. (2012). Combustion and gasification characteristics of chars from raw and torrefied biomass, Bioresource Technology, 119, pp. 157-165.
  • [11]. Keipi, T., Tolvanen, H., Kokko, L. & Raiko, R. (2014). The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples, Biomass and Bioenergy, 66, pp. 232-239.
  • [12]. Kelessidis, A. & Stasinakis, A.S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries, Waste Management, 32, pp. 1186-1195.
  • [13]. Kim, Y.H., Lee, S.M., Lee. H.W. & Lee, J.W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera), Bioresource Technology, 116, pp.120-125.
  • [14]. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. & Crowley, D. (2011). Biochar effects on soil biota - A review, Soil Biology and Biochemistry, 43, pp. 1812-1836.
  • [15]. Lipinsky, E.S., Arcate, J.R. & Reed, T.B. (2002). Enhanced wood fuels via torrefaction, Fuel Chemistry Division Preprints, 4, pp. 408-410.
  • [16]. Mimmoa, T., Panzacchib, P., Baratieri, M., Davies, C.A. & Tonon, G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties, Biomass and Bioenergy, 62, pp. 149-157.
  • [17]. Montross, M. & Crofcheck, C. (2010). Thermochemical Conversion of Biomass to Liquid Fuels and Chemical, RSC Publishing, 2010.
  • [18]. Park, S.W., Jang, C.H., Baek, K.R. & Yang, J.K. (2012). Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products, Energy, 45, pp. 676-685.
  • [19]. Phanphanich, M. & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresource Technology, 102, pp.1246-1253.
  • [20]. Polish standard. (1987). PN-C-04301:1987P, Coke and semi-coke of coal. Determination of carbon and hydrogen content.
  • [21]. Polish standard. (2010). PN-EN 14774-1:2010E, Solid biofuels - Determination of moisture content - drier method - Part 1: Total moisture - Reference method.
  • [22]. Polish standard. (2010). PN-EN 14775:2010, Solid biofuels - Ash content determination.
  • [23]. Polish standard. (2011). PN-EN 14780:2011, Solid biofuels - Samples preparation.
  • [24]. Polish standard. (2010). PN-EN 15148:2010, Solid biofuels - Determination of volatile compounds content.
  • [25]. Polish standard. (2001). PN-G-04584:2001P, Solid fuels. Determination of total sulfur and fl y ash with automatic analyzers.
  • [26]. Prins, M.J. (2005). Thermodynamic Analysis of Biomass Gasification and Torrefaction, Ph.D. thesis, Technische Universiteit Eindhoven 2005.
  • [27]. Ratte, J., Fardet, E., Mateos, D. & Hery, J.S. (2011). Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD column, Biomass and Bioenergy, 35, pp. 3481-3495.
  • [28]. Rousset, P., Macedob, L., Commandréa, J.M. & Moreirab, A. (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, Journal of Analytical and Applied Pyrolysis, 96.
  • [29]. Smith, S.R. (2008) The implications for human health and the environment of recycling biosolids on agricultural land, Imperial College of London, London 2008.
  • [30]. Sohi, S., Lopez-Capel, E., Krull, E. & Bol, R. (2009). Biochar, climate change and soil: a review to guide future research, CSIRO Land and Water Science Report 05/09.
  • [31]. Stasta, P., Borana, J., Bebara, L., Stehlika, P. & Oral, J. (2006). Thermal processing of sewage sludge, Applied Thermal Engineering, 26, pp. 1420-1426.
  • [32]. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A. & Ptasinski, K.J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass and Bioenergy, 35, pp. 3748-3762.
  • [33]. Verhoeff, F., Arnuelos, A.A., Boersma, R., Pels, J.R., Lensselink, J., Kiel, J.H.A. & Schukken, H. (2011). Torrefaction Technology for the production of solid bioenergy carriers from biomass and waste, ECN-E-11-039.
  • [34]. Wang, C., Peng, J., Li, H., Bib, X.T., Legros, R., Lim, C.J. & Sokhansanj, S. (2013). Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets, Bioresource Technology, 127.
  • [35]. Wannapeera, J., Fungtammasan, B. & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass, Journal of Analytical and Applied Pyrolysis, 92, pp. 99-105.
  • [36]. Wannapeera, J. & Worasuwannarak, N. (2012). Upgrading of woody biomass by torrefaction under pressure, Journal of Analytical and Applied Pyrolysis, 96, pp. 173-180.
  • [37]. Werle, S. (2012) Possibility of NOx emission reduction from combustion process using sewage sludge gasification gas as an additional fuel, Archives of Environmental Protection, 38, 3, pp 81-89.
  • [38]. Wiśniewski, D. & Gołaszewski, J. (2013). Thermal treatment of dewatered digestate for energy use, International Anaerobic Digestion Symposium at Biogas World 2013, Berlin, 23-25 April, 2013.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83da3b25-4ff3-412b-be49-e442275efe51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.