PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deuterium isotope effects in mechanistic studies of biotransformations of L-tyrosine and p-hydroxyphenylpyruvic acid catalyzed by the enzyme L-phenylalanine dehydrogenase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanisms of the reversible oxidative deamination of L-tyrosine to p-hydroxyphenylpyruvic acid and reductive amination of phenylpyruvic acid to L-phenylalanine, both catalyzed by the enzyme L-phenylalanine dehydrogenase (PheDH, EC 1.4.1.20), were investigated using the kinetic isotope effect (KIE) and solvent isotope effect (SIE) methods. The values of deuterium kinetic effects in the 2-position of L-tyrosine and KIE in the (3S)-position of phenylpyruvic acid and solvent isotope effects for both reactions were determined using the non- -competitive spectrophotometric method. Some mechanistic details of these biotransformations were discussed.
Czasopismo
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Chemistry University of Warsaw Pasteura St. 1, 02-093 Warsaw, Poland
  • Department of Biochemistry, Medical Faculty, Medical University of Warsaw Żwirki i Wigury St. 61, 02-091 Warsaw, Poland
  • Department of Biochemistry, Medical Faculty, Medical University of Warsaw Żwirki i Wigury St. 61, 02-091 Warsaw, Poland
  • Department of Chemistry University of Warsaw Pasteura St. 1, 02-093 Warsaw, Poland
Bibliografia
  • 1. Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat., 28(9), 831–845.
  • 2. Williams, R. A., Mamotte, C. D. S., & Burnett, J. R. (2008). Phenylketonuria: An inborn error of phenylalanine metabolism. Clin. Biochem. Rev., 29(1), 31–41.
  • 3. Hendriksz, C. J., & Walter, J. H. (2004). Update on phenylketonuria. Curr. Pediatr., 14(5), 400–406.
  • 4. Mitchell, G. A., Grompe, M., Lambert, M., & Tanguay, R. M. (2001) Hypertyrosinemia. In C. R. Scriver, A. L. Beaudet & W. S. Sly (Eds.), The metabolic and molecular bases of inherited disease. (8th ed., Vol. II, pp. 1777–1785). New York: McGraw-Hill.
  • 5. Brunhuber, N. M. W., Banerjee, A., Jacobs, W. R. Jr, & Blanchard, J. S. (1994). Cloning, sequencing, and expressing of Rhodococcus L-phenylalanine dehydrogenase. J. Biol. Chem., 269(23), 16203–16211.
  • 6. Brunhuber, N. M. W., Thoden, J. B., Blanchard, J. S., & Vanhooke, J. L. (2000). Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifi ty. Biochemistry, 39(31), 9174–9187.
  • 7. Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2002). Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Biochemistry, 41, 11390–11397.
  • 8. Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2003). Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modelling. Eur. J. Biochem., 270, 4628–4634.
  • 9. Asano, Y., Yamada, A., Kato, Y., Yamaguchi, K., Hibino, Y., Hirai, K., & Kondo, K. (1990). Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem., 55(21), 5567–5571.
  • 10. Busca, P., Paradisi, F., Moynihan, E., Maguire, A. R., & Engel, P. C. (2004). Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesis. Org. Biomol. Chem., 2, 2684–2691.
  • 11. Hummel, W. E., Schmidt, E., Wandrey, C., & Kula, M. -R. (1986). L-Phenylalanine dehydrogenase from Brevibacterium sp. for production L-phenylalanine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol., 25(3), 175–185.
  • 12. Sühnel, J. R. L., & Schowen, L. R. (1991). Theoretical basis for primary and secondary hydrogen isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 3–35). Boca Raton (FL): CRC Press.
  • 13. Schowen, L. R. (1972). Mechanistic deductions from solvent isotope effect. Prog. Phys. Org. Chem., 9, 275–332.
  • 14. Jemielity, J., Kański, R., & Kańska, M. (2001). Synthesis of tritium labeled [3R3H]-, and [3S3H]-L-phenylalanine. J. Label. Compd. Radiopharm., 44, 205–304.
  • 15. Skowera, K., & Kańska, M. (2008). Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14. J. Label. Compd., 51, 321–324.
  • 16. Pałka, K., & Kańska, M. (2012). Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of L-tyrosine and L-phenylalanine labeled with deuterium and tritium. Nukleonika, 57(3), 383–387.
  • 17. Gary, R., Bates, R. G., & Robinson, R. A. (1964). Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale. J. Phys. Chem., 68(12), 3806–3809.
  • 18. Kańska, M., Dragulska, S., Pająk, M., & Winnicka, E. (2015). Isotope effects in the hydroxylation of Ltyrosine catalyzed by tyrosinase. J. Radioanal. Nucl. Chem., 305(2), 371–378.
  • 19. Parkin, D. W. (1991). Methods for determination of competitive and noncompetitive kinetics isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 269–290), Boca Raton (FL): CRC Press.
  • 20. Papajak, E., Kwiecień, R. A., Rudziński, J., Sicińska, D., Kamiński, R., Szadkowski, Ł., Kurihara, T., Esaki, N., & Paneth, P. (2006). Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effects. Biochemistry, 45(19), 6012–6017.
  • 21. Brunhuber, N. M. W., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol., 29(6), 415–467.
  • 22. Wende, U., Koppelkam, M., Hummel, W., Sander, J., & Langenbeck, U. (1990). A new approach to the newborn screening for hyperphenylalaninemias: use of L-phenylalanine dehydrogenase and micrititer plates. Clin. Chim. Acta, 192(3), 165–170.
  • 23. Naghib, S. M., Rabee, M., Omidinia, E., & Khoshkenar, P. (2012). Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuria. Electroanalysis, 24, 407–417.
  • 24. Asano, Y., & Nakazawa, A. (1987). High yield synthesis of L-amino acids by phenylalanine dehydrogenase from Sporasacrina ureae. Agric. Biol. Chem., 51(7), 2035–2036.
  • 25. Vanhooke, J. L., Thoden, J. B., Brunhuber, N. M. W., Blanchard, J. S., & Holden, H. M. (1999). Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry, 38(8), 2326–2339.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83da2c01-5aac-40e8-a30e-0ecf91e41205
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.