PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study of empirical and ensemble machine learning algorithms in predicting air over pressure in open pit coal mine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to take into account the feasibility of three ensemble machine learning algorithms for predicting blast-induced air over-pressure (AOp) in open-pit mine, including gradient boosting machine (GBM), random forest (RF), and Cubist. An empirical technique was also applied to predict AOp and compared with those of the ensemble models. To employ this study, 146 events of blast were investigated with 80% of the total database (approximately 118 blasting events) being used for developing the models, whereas the rest (20%~28 blasts) were used to validate the models’ accuracy. RMSE, MAE, and R2 were used as performance indices for evaluating the reliability of the models. The fndings revealed that the ensemble models yielded more precise accuracy than those of the empirical model. Of the ensemble models, the Cubist model provided better performance than those of RF and GBM models with RMSE, MAE, and R2 of 2.483, 0.976, and 0.956, respectively, whereas the RF and GBM models provided poorer accuracy with an RMSE of 2.579, 2.721; R2 of 0.953, 0.950, and MAE of 1.103, 1.498, respectively. In contrast, the empirical model was interpreted as the poorest model with an RMSE of 4.448, R2 of 0.872, and MAE of 3.719. In addition, other fndings indicated that explosive charge capacity, spacing, stemming, monitoring distance, and air humidity were the most important inputs for the AOp predictive models using artifcial intelligence.
Czasopismo
Rocznik
Strony
325--336
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Center for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Vietnam
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Center for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Center for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Vietnam
autor
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Faculty of Mining, Saint-Petersburg Mining University, Saint Petersburg, Russia
  • Department of Surface Mining, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Center for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang ward, Bac Tu Liem Dist., Hanoi, Vietnam
  • Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Bibliografia
  • 1. Alel MNA, Upom MRA, Abdullah RA, Abidin MHZ (2018) Optimizing blasting’s air overpressure prediction model using swarm intelligence. In: Journal of Physics: Conference Series, vol 1. IOP Publishing, p 012046
  • 2. AminShokravi A, Eskandar H, Derakhsh AM, Rad HN, Ghanadi A (2018) The potential application of particle swarm optimization algorithm for forecasting the air-overpressure induced by mine blasting. Eng Comput 34(2):277–285. https://doi.org/10.1007/s00366-017-0539-5
  • 3. Amiri M, Amnieh HB, Hasanipanah M, Khanli LM (2016) A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure. Eng Comput 32(4):631–644
  • 4. Armaghani DJ, Hajihassani M, Marto A, Faradonbeh RS, Mohamad ET (2015) Prediction of blast-induced air overpressure: a hybrid AI-based predictive model. Environ Monit Assess 187(11):666
  • 5. Armaghani DJ, Hasanipanah M, Mohamad ET (2016) A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Eng Comput 32(1):155–171
  • 6. Asteris PG, Nikoo M (2019) Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput Appl. https://doi.org/10.1007/s00521-018-03965-1
  • 7. Asteris P, Kolovos K, Douvika M, Roinos K (2016) Prediction of self-compacting concrete strength using artificial neural networks. Eur J Environ Civ Eng 20(sup1):s102–s122
  • 8. Bach NV, Nam BX, An ND, Hung TK (2012) Determination of blast-induced ground vibration for non-electric delay blasting (in Vietnamse). J SciTechnol Hanoi Univ Min Geol 38(02):25–28
  • 9. Bernat K, Drzewiecki W (2015) A study of selected textural features usefulness for impervious surface coverage estimation using Landsat images. In: Image and signal processing for remote sensing XXI, 2015. International society for optics and photonics, p 964327
  • 10. Breiman L (2001) Random for Mach Learn 45(1):5–32
  • 11. Bui XN, Nguyen H, Le HA, Bui HB, Do NH (2019a) Prediction of blast-induced air over-pressure in open-pit mine: assessment of different artificial intelligence techniques. Nat Resour Res. https://doi.org/10.1007/s11053-019-09461-0
  • 12. Bui X-N, Nguyen H, Le H-A, Bui H-B, Do N-H (2019b) Prediction of blast-induced air over-pressure in open-pit mine: assessment of different artificial intelligence techniques. Nat Res Res. https://doi.org/10.1007/s11053-019-09461-0
  • 13. Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ 662:332–346
  • 14. Drzewiecki W (2016) Comparison of selected machine learning algorithms for sub-pixel imperviousness change assessment. In: Geodetic Congress (Geomatics), Baltic, 2016. IEEE, pp 67–72
  • 15. Friedman J (1999) Greedy function approximation: A stochastic boosting machine. Department of Statistics Stanford University
  • 16. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232
  • 17. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378
  • 18. Gao W, Guirao JL, Basavanagoud B, Wu J (2018) Partial multi-dividing ontology learning algorithm. Inf Sci 467:35–58
  • 19. Gao W, Alqahtani AS, Mubarakali A, Mavaluru D, Khalafi S (2019) Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA. Eng Comput. https://doi.org/10.1007/s00366-019-00720-5
  • 20. Hajihassani M, Armaghani DJ, Sohaei H, Mohamad ET, Marto A (2014) Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl Acoust 80:57–67
  • 21. Hasanipanah M, Armaghani DJ, Khamesi H, Amnieh HB, Ghoraba S (2016) Several non-linear models in estimating air-overpressure resulting from mine blasting. Eng Comput 32(3):441–455
  • 22. Hustrulid W (1999) Blasting principles for open-pit blasting: theoretical foundations. Balkema, Rotterdam
  • 23. Jhanwar J, Cakraborty A, Anireddy H, Jethwa J (1999) Application of air decks in production blasting to improve fragmentation and economics of an open pit mine. Geotech Geol Eng 17(1):37–57
  • 24. Khandelwal M, Kankar P (2011) Prediction of blast-induced air overpressure using support vector machine. Arab J Geosci 4(3–4):427–433
  • 25. Khandelwal M, Singh T (2005) Prediction of blast induced air overpressure in opencast mine. Noise Vib Worldw 36(2):7–16
  • 26. Kuhn M, Weston S, Keefer C, Coulter N (2012) Cubist models for regression. R package Vignette R package version 00 18
  • 27. Kuhn M, Weston S, Keefer C, Kuhn MM (2018) Package ‘Cubist’
  • 28. Kuzu C, Fisne A, Ercelebi S (2009) Operational and geological parameters in the assessing blast induced airblast-overpressure in quarries. Appl Acoust 70(3):404–411
  • 29. Loder B (1985) National Association of Australian State Road Authorities. In: Australian Workshop for Senior ASEAN Transport Officials, 1985, Canberra, 1987
  • 30. Mahdiyar A, Marto A, Mirhosseinei SA (2018) Probabilistic air-overpressure simulation resulting from blasting operations. Environ Earth Sci 77(4):123
  • 31. McKenzie C (1990) Quarry blast monitoring: technical and environmental perspectives. Quarry Manag 17:23–24
  • 32. Mohamad ET, Armaghani DJ, Hasanipanah M, Murlidhar BR, Alel MNA (2016) Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environ Earth Sci 75(2):174
  • 33. Montahaei M, Oskooi B (2014) Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks. Acta Geophys 62(1):12–43. https://doi.org/10.2478/s11600-013-0164-7
  • 34. Naganna SR, Deka PC (2019) Artificial intelligence approaches for spatial modeling of streambed hydraulic conductivity. Acta Geophys. https://doi.org/10.1007/s11600-019-00283-5
  • 35. Nguyen H, Bui X-N (2018a) Feasibility of artificial neural network in predicting blast-induced air overpressure in open-pit mine. J Min Ind 01:60–66
  • 36. Nguyen H, Bui X-N (2018b) Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest. Nat Resour Res. https://doi.org/10.1007/s11053-018-9424-1
  • 37. Nguyen H, Bui X-N, Tran Q-H (2017) Prediction of blast-induced air overpressure in Deo Nai open-pit coal mine using Random Forest algorithm. J Min Ind 06:47–53
  • 38. Nguyen H, Bui X-N, Tran Q-H, Le T-Q, Do N-H, Hoa LTT (2018a) Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. SN Appl Sci 1(1):125. https://doi.org/10.1007/s42452-018-0136-2
  • 39. Nguyen H, Bui XN, Bui HB, Mai NL (2018b) A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3717-5
  • 40. Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2019a) Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam. Environ Earth Sci 78(15):479. https://doi.org/10.1007/s12665-019-8491-x
  • 41. Nguyen H, Bui X-N, Tran Q-H, Mai N-L (2019b) A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist algorithms. Appl Soft Comput 77:376–386. https://doi.org/10.1016/j.asoc.2019.01.042
  • 42. Nguyen H, Moayedi H, Foong LK, Al Najjar HAH, Jusoh WAW, Rashid ASA, Jamali J (2019c) Optimizing ANN models with PSO for predicting short building seismic response. Eng Comput. https://doi.org/10.1007/s00366-019-00733-0
  • 43. Nguyen H, Drebenstedt C, Bui X-N, Bui DT (2019d) Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat Resour Res. https://doi.org/10.1007/s11053-019-09470-z
  • 44. Nguyen H, Bui X-N, Bui H-B, Cuong DT (2019e) Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys 67(2):477–490. https://doi.org/10.1007/s11600-019-00268-4
  • 45. Nguyen H, Bui X-N, Moayedi H (2019f) A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophys. https://doi.org/10.1007/s11600-019-00304-3
  • 46. Piasecki A, Jurasz J, Adamowski JF (2018) Forecasting surface water-level fluctuations of a small glacial lake in Poland using a wavelet-based artificial intelligence method. Acta Geophys 66(5):1093–1107. https://doi.org/10.1007/s11600-018-0183-5
  • 47. Pierini JO, Lovallo M, Telesca L, Gómez EA (2013) Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina). Acta Geophys 61(6):1522–1537. https://doi.org/10.2478/s11600-012-0093-x
  • 48. Quinlan JR (1992) Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence. Singapore, pp 343–348
  • 49. Quinlan R (2004) Data mining tools See5 and C5. 0
  • 50. Rahmani Y, Farnood Ahmadi F (2018) Application of InSAR in measuring Earth’s surface deformation caused by groundwater extraction and modeling its behavior using time series analysis by artificial neural networks. Acta Geophys 66(5):1171–1184. https://doi.org/10.1007/s11600-018-0182-6
  • 51. Rulequest (2016a) Data Mining with Cubist. https://www.rulequest.com/cubist-win.html. Accessed 26 Feb 2019
  • 52. Rulequest (2016b) Data Mining with Cubist. https://www.rulequestcom/cubist-info.html RuleQuest Research Pty Ltd.,St. Ives, NSW, Australia
  • 53. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270
  • 54. Shang Y, Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2019) A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat Resour Res. https://doi.org/10.1007/s11053-019-09503-7
  • 55. Siskind DE, Stachura VJ, Stagg MS, Kopp JW (1980) Structure response and damage produced by airblast from surface mining. Citeseer
  • 56. Tarantola S, Gatelli D, Kucherenko S, Mauntz W (2007) Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab Eng Syst Saf 92(7):957–960
  • 57. Vigneau E, Courcoux P, Symoneaux R, Guérin L, Villière A (2018) Random forests: a machine learning methodology to highlight the volatile organic compounds involved in olfactory perception. Food Qual Prefer 68:135–145
  • 58. Vinacomin (2015) Report on geological exploration of Coc Sau open pit coal mine, Quang Ninh, Vietnam (in Vietnamse-unpublished). VINACOMIN, Vietnam
  • 59. Walter E (1990) Surface blast design. Prentice Hall, New Jersey
  • 60. Wiszniowski J (2016) Applying the general regression neural network to ground motion prediction equations of induced events in the Legnica-Głogów copper district in Poland. Acta Geophys 64(6):2430–2448. https://doi.org/10.1515/acgeo-2016-0104
  • 61. Zhang X, Nguyen H, Bui X-N, Tran Q-H, Nguyen D-A, Bui DT, Moayedi H (2019) Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Nat Resour Res. https://doi.org/10.1007/s11053-019-09492-7
  • 62. Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, Mitri HS (2019a) Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf Sci 118:505–518
  • 63. Zhou J, Nekouie A, Arslan CA, Pham BT, Hasanipanah M (2019b) Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm. Eng Comput. https://doi.org/10.1007/s00366-019-00725-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Korekta artykułu znajduje się w Vol. 69, no. 5/2021, na stronach 1609-1610. Numer DOI korekty: 10.1007/s11600-019-00396-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83cf89d8-a2ac-4ac2-ae49-e3b971f1d731
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.