PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploitation of industrial solid wastes for preparing zeolite as a value-added product and its kinetics as adsorbent for heavy metal ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum and fumed silica as solid industrial wastes were converted to zeolite NaPas a value-addedproduct without any template. The hydrothermal process was optimized using static autoclave. The crystallization was carried out at 100, 120 and 150°C for 24, 48 and 72 h. The prepared zeolite of Si:Al ratio of 1.2 was characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) provided with Energy Dispersive Spectroscopy (EDS), Surface Area, Fourier Transmitted Infra-Red (FTIR) and Thermal Analysis (TG-DSC). The crystalline phase was formed at 100°Cafter 72 hours and at 120°C after 48 hours, while it was formed after 24 honlyat 150°C. Increasing temperature and time lead to the conversion of the prismatic gibbsite crystals into plate-like structure of zeolitewhich is then formedcauliflower-like structure.The prepared zeolite was employed as adsorbent for Ni2+and Cu2+ions from aqueous solution.The kinetic studies of adsorption processes were performed.
Rocznik
Strony
87--99
Opis fizyczny
Bibliogr. 49 poz., fot., rys., wykr.
Twórcy
  • Central Metallurgical Research and Development Institute (CMRDI)
  • Central Metallurgical Research and Development Institute (CMRDI)
  • Central Metallurgical Research and Development Institute (CMRDI)
  • Central Metallurgical Research and Development Institute (CMRDI)
  • Central Metallurgical Research and Development Institute (CMRDI)
  • Chemistry Department, Faculty of Science, Ain shams University, Cairo, Egypt
  • Chemistry Department, Faculty of Science, Ain shams University, Cairo, Egypt
Bibliografia
  • ABDEL KHALEK, M.A., ABDEL RAHMAN, M.K., FRANCIS, A.A., 2017. Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg. Journal of Environmental Chemical Engineering 5, 319-327.
  • ABDEL KHALEK, M.A., ABDEL RAHMAN, M.K., FRANCIS, A.A., 2020. Experimental Design and Desirability Analysis for Optimizing the Bio-sorption of Liquid Paint-related Wastes onto Solid Eggshell Wastes. Environmental Processes, 7, 493–508.
  • ABDEL KHALEK, M.A., MAHMOUD, G.A., SHOUKRY, E.M., AMIN, M., ABDULGHANY, A.H., 2019. Adsorptive removal of nitrate ions from aqueous solution using modified biodegradable-based hydrogel. Desalination and Water Treatment, 155, 390-401.
  • ADAMS, C.J., ARAYA, A., CARR, S.W., CHAPPLE, A.P., FRANKLIN, K.R., GRAHAM, P., MINIHAN, A.R., OSINGA, T.J., STUART, J.A., 1997. Zeolite map: The new detergent zeolite, 105 (Eds.: H. Chon, S. K. Ihm, Y. S. Uh), Elsevier ScienceBv, Amsterdam, 1667-1674.
  • AGUADO, J., SERRANO, D.P., ESCOLA, J.M., RODRIGUEZ, J.M., 2004. Low temp., synthesis and properties of ZSM5 aggregates formed by ultra-small nanocrystals, Microporous Mesoporous Mater. 75, 41-49.
  • BAERLOCHER, C.H., MEIER, W.M., 1972. Crystal structure of synthetic Zeolite Na-P1, an isotype of gismondine. Z. Kristallogr, 135:339.
  • BOUKADIR, D., BETTAHAR, N., DERRICHE, Z., 2002. Etude de la synthese des zeolites 4A et HS a partir de produitsnaturels. In Annales de Chimie Science des Matériaux. (27), 1-13.
  • Cao J.L., Liu X.W., Fu R., Tan Z.Y., 2008. Synthesis, characterization and the behavior in potassium extraction from seawater Sep. Purif. Technol. 63, 92.
  • CEJKA, J., MORRIS, R.E., DAVID, D.P., 2016. Catalysis on Zeolites, Catal. Sci. Technol. 6, 2465-2466.
  • CORMA, A., 1997. Frommicropourous to mesopours molecular sieve materials and their use in catalysis, Chem. Rev. 97, 2373-2419.
  • COVELO, E.F., 2004. Simultaneous adsorption of Cd, Cr, Cu, Ni, Pb and Zn by different soils. J. Food Agric. Environ. 2 (3–4) 244–250.
  • CUNDY, C.S., COX, P.A., 2005. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mater. 82, 1-78.
  • DELGADO, A.L., RODRIGUEZ, O., PADILLA, I., GALINDO, R., ANDRES, S.L., 2014. Energy Production and Management in the 21st Century. WIT Transactions on Ecology and The Environment, 180, 1743-3541.
  • DUAN, P., YAN, C., ZHOU, W., REN, D., 2016. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater. Ceram. Int., 42, 13507–13518.
  • GALINDO, R., PADILLA, I., SANCHEZ-HERNANDEZ, R., ROBLA, J.I., MONROS, G., LOPEZ-DELGADO, A., 2015a. Production of added-value materials from a hazardous waste in the aluminum tertiary industry: Synergistic effect between hydrotalcites and glasses. Journal of Environmental Chemical Engineering, 3, 2552-2559.
  • GALINDO, R., PADILLA, I., RODRIGUEZ, O., SANCHEZ-HERNANDEZ, R., LOPEZ-ANDRES, S., LOPEZDELGADO, A., 2015b. Characterization of solid wastes from aluminum tertiary sector: The current state of Spanish industry. Journal of Minerals and Materials Characterization and Engineering, 3, 55.
  • GARCIA, G., CARDENAS, E., CABRERA, S., HEDLUND, J., MOUZON, J., 2016. Synthesis of zeolite Y from diatomite as silica source. Microporous and Mesoporous Materials. 219, 29-37.
  • GOTTARDI, G., GALLI, E., 1985. Natural Zeolite, springer-Verlag, Berlin Heidelberg, New York Tokyo, 4th ed, 14-15.
  • HANSEN, S., HAKANSSON, U., LANDA-CANOVAS, A.R., FALTH, L., 1993. On the Crystal Chemistry of NaP Zeolites, 13, 276-280.
  • HU, Y., LIU, X., 2003. Composition and surface property of kaolins. Min. Eng. 16, 1279-1284.
  • HUANG, Y., DONG, D., YAO, J., HE, L., HO, J., KONG, C., HILL, A.J., WANG, H., 2010. in Situ Crystallization of Macroporous Monoliths with Hollow NaP Zeolite Structure, Chem. Mater., 22, 5271-5278.
  • HUO, Z., XU, X., LV, Z., SONG, J., HE, M., LI, Z., WANG, Q., YAN, L., LI, Y., 2013. Thermal study of NaP zeolite with different morphologies. J. Thermal Anal. Calorim., 111, 365-369.
  • HUO, Z.P., XU, X.Y., LU, Z., SONG, J.Q., HE, M.Y., LI, Z.F., WANG, L.J. YAN, Q., 2012. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mater. 158, 137-140.
  • JIANG, M.Q.; JIN, X., LU, X.Q., CHEN, Z., 2010. Adsorption of Pb2+, Cd2+, Ni2+ and Cu2+ onto natural kaolinite clay. Desalination, 252, 33–39.
  • LARSEN, S.C., 2007. Nanocrystalline Zeolite & Zeolite Structures: Synthesis, Characterization & Applications. J. Phys. Chem. C, 111, 18464-18474.
  • LOBO, R.F., ZONES, S.I., DAVIS, M.E., 1995. Structure-direction in zeolite synthesis. J. Inclusion Phenom. Mol. Recognit. Chem., 21, 47–78.
  • LOPEZ-DELGADO, A., ROBLA, J.I., PADILLA, I., LOPEZ-ANDRES, S., ROMERO, M., 2020. Zero-waste process for the transformation of a hazardous aluminum waste into a raw material to obtain zeolites. Journal of Cleaner Production. 255 (120178). ISSN 0959-6526, ESSN: 1879-1786.
  • LOPEZ-DELGADO, A., TAYIBI, H., 2012. Can hazardous waste become a raw material? The case study of an aluminum residue: A review. Waste Management and Research, 30, 474-484.
  • MAHINROOSTAA, M., ALLAHVERDI, A., 2018. Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management. 223, 452-468.
  • MAHMOUD, G.A., ABDEL KHALEK, M.A., SHOUKRY, E.M., AMIN, M., ABDULGHANY, A.H., 2019. Removal of phosphate ions from wastewater by treated hydrogel based on chitosan, Egyptian Journal of Chemistry, 62(8), 1537-1549.
  • MALONADO, M., OLEKSIAK, M.D., CHINTA, S., RIMER, J.D., 2013. Controlling Crystal Polymorphism in OrganicFree Synthesis of Na-Zeolites. J. Am. Chem. Soc., 135, 2641-2652.
  • MEFTAH, M., OUESLATI, W., CHORFI, N., AMARA, A., 2008. Synthesis process of zeolite P using a poorly crystallized kaolinite. Physics Procedia 00, 1081-1086.
  • MEIER, W.M., OLSEN, D.H., 1996. Atlas of zeolite structure types, 4th ed., Zeolites. Butterworth-Heinemann, London.
  • MOHORA, E., RONCEVIC, S., DALMACIJA, B., AGBABA, J., WASTON, M., KARLOVIC, E., DALMACIJA, M., 2012. Removal of natural organic matter and arsenic from water by electro-coagulation/flotation continuous flow reactor.J. Hazard. Mater. 235-236, 257-264.
  • MOLINER, M., REY, F., CORMA, A., 2013. Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Chem. Int. Ed. 52, 13880-13889.
  • NAVROTSKY, A., TROFYMLUK, O., LEVCHENKO, A.A., 2009. Phase Transitions in Meso-structured Silica/Surfactant Composites: Surfactant Packing and the Role of Charge Density Matching. Chem. Rev., 109, 3885–3902.
  • OLEKSIAK, M.D., GHORBANPOUR, A., CONATO, M.T., MCGRAIL, B.P., GRABOW, L.C., MOTKURI, R.K., RIMER, J.D., 2016. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations. Chem. Eur. J. 22, 16078-16088.
  • OLEKSIAK, M.D., RIMER, J.D., 2014. Synthesis oF Zeolite in the absence of organic structure directing agents: Factors governing crystal selection and polymorphism. Rev. Chem. Eng., 30, 1-49.
  • RODRIGUES, M., SOUZA, A.G., SANTOS, I.M.G., 2016. Brazilian Kaolin Wastes: Synthesis of Zeolite P at LowTemperature. American Chemical Science Journal. 12, 4, 1-11.
  • SELIM, K.A., HASAN, R., ABDEL KHALEK, M.A., YOUSEFF, M.A., ABDEL KHALEK, N.A., 2020. Surface Modified Bentonite Mineral as a Sorbent for Pb2+ and Zn2+ Ions Removal from Aqueous Solutions. Physico chemical Problems of Mineral Processing, 2020, 56(6), 145-157.
  • TSAKIRIDIS, P.E., OOUSTADAKIS, P., AGATZINI-LEONARDOU, S., 2013. Aluminium recovery during black dross hydrothermal treatment. Journal of Environmental Chemical Engineering, 1, 23-32.
  • VARTULI, J.C., KENNEDY, G.J., YOON, B.A., MALEK, A., 2000. Zeolite syntheses using diamines: evidence for in situ directing agent modification. MicroporousMesoporous Mater. 38, 247-254.
  • VISA, M., 2016. Synthesis and characterization of new zeolite materials obtained from flyash for heavy metals removal in advanced wastewater treatment. Powder Technology 294, 338-347.
  • WANG, N., XU X., LI H., ZHAI, J., YUAN, L., ZHANG, K., YU, H., 2016. Preparation and application of a xanthatemodified thiourea chitosan sponge for removal of Pb2+ from aqueous solutions. Ind. Eng. Chem. Res 55: 4960–4968.
  • XALINYUAN, 2020. http://www.xalinyuan.com/china/about.asp?ClassIDone=331 & ClassIDtwo=425, accessed on October, 8, 2020.
  • ZARE, E.N., LAKOURAJ, M.M., MASOUMI, M., 2018. Efficient removal of Pb2+ and Cd2+ from water by cross-linked poly(N-vinylpyrrolidone-co-maleic anhydride) eggshell/Fe3O4 environ. friendly nano composite, Desalin Water Treat 106: 209–219.
  • ZARE, E.N., LAKOURAJ, M.M., RAMEZANI, A., 2016. Efficient sorption of Pb2+ from an aqueous solution using a poly (aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New J. Chem. 40, 2521.
  • ZHANG, H., DANG, Q., LIU, C., CHA, D., YU, Z., ZHU, W., FAN, B., 2017. Uptake of Pb2+ and Cd2+ on chitosan microsphere surface successively grafted by methyl acrylate and diethylenetriamine. ACS Appl Mater Interfaces 9, 11144–11155.
  • ZUBOWA, H.L., KOSSLICK, H., MULLER, D., RICHTER, M., WILDE, L., FRICKE, R., 2008. Crystallization of phase pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous and Mesoporous Materials, 109, 542-548.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83cec868-11e2-4458-bea4-215d1967d946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.