Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper endeavours to study aspects of wave propagation in a random generalized-thermal micropolar elastic medium. The smooth perturbation technique conformable to stochastic differential equations has been employed. Six different types of waves propagate in the random medium. The dispersion equations have been derived. The effects due to random variations of micropolar elastic and generalized thermal parameters have been computed. Randomness causes change of phase speed and attenuation of waves. Attenuation coefficients for high frequency waves have been computed. Second moment properties have been briefly discussed with application to wave propagation in the random micropolar elastic medium. Integrals involving correlation functions have been transformed to radial forms. A special type of generalized thermo-mechanical auto-correlation functions has been used to approximately compute effects of random variations of parameters. Uncoupled problem has been briefly outlined.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21--60
Opis fizyczny
Bibliogr. 46 poz., wz.
Twórcy
autor
- Department of Mathematics, Presidency College, Kolkata 700073, India
autor
- Department of Applied Mathematics, Calcutta University Kolkata 700009, India
Bibliografia
- [1] ERINGEN A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(1966), 6, 909–922.
- [2] ERINGEN A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(1990), 12, 1291–1301.
- [3] ERINGEN A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(1990), 2, 133–143.
- [4] ERINGEN A.: Microcontinuum Field Theories. Springer Science + Business Media, New York 1999.
- [5] MARIN M.: Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math. 70(1996), 1, 115–126.
- [6] MARIN M.: A domain of influence theorem for microstretch elastic materials. Non-Linear Analysis: Real World Applications 11(2010), 5, 3446–3452.
- [7] MARIN M., LUPU M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(1998), 5, 507–518.
- [8] MARIN M., MARINESCU C.: Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1998), 1, 73–86.
- [9] KUMAR R.: Wave propagation in micropolar viscoelastic generalized thermoelastic solid. Int. J. Engg. Sci. 38(2000), 1377–1395.
- [10] SINGH B.: Wave propagation in an anisotropic generalized thermoelastic solid. Indian J. Pure Appl. Math. 34(2003), 10, 1479–1485.
- [11] SINGH B., KUMAR R.: Reflection and Refraction of plane waves at an interface between micropolar elastic solid and viscoelastic solid. Int. J. Eng. Sci. 36(1998), 2, 119–135.
- [12] KUMAR R., Deswal a micropolar thermoelastic medium without energy dissipation. J. Sound Vibration 256(2002), 1, 173–178.
- [13] KUMAR R., SINGH B.: Wave propagation in a micropolar generalized thermoelastic body with stretch. Proc. Indian Acad. Sci. (Math. Sci), 106(1996), 2, 183–199.
- [14] KUMAR R., TOMAR S.K.: Propagation of micropolar waves at boundary surface. Indian J. Pure Appl. Math. 27(1996), 8, 821–835.
- [15] AOUADI M.: The coupled theory of micropolar thermoelastic diffusion. Acta Mechanica 208(2009), 181–203.
- [16] SUIKER A.S.J., BORST R. DE, CHANG C.S.: Micro-mechanical model ling of granular material: Part I: Derivation of a second-gradient micro-polar constitutive theory. Part II: Plane wave propagation in infinite media Acta Mechanica 149(2001), 161–2001.
- [17] MAJEWSKI E.: Earthquake Source Asymmetry, Structural Media and Rotation Effects, Chapter 19 (R. Teisseyre, M. Takeo, and E. Majewski, Eds.). Springer Verlag, 2006.
- [18] MITRA M, BHATTACHARYYA R.K.: On wave propagation in a random micropolar thermoelastic medium, second soments and associated Green’s tensor. Wave Random Complex 25(2015), 4, 506–535.
- [19] LORD H.W., SHULMAN Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(1967), 299–309.
- [20] GREEN A.E., LINDSAY K.A.: Thermoelasticity. J. Elasticity 2(1972), 1–7.
- [21] IGNACZAK J., OSTOJA-STARZEWSKI M.: Thermoelasticyty with Finite Wave Speeds. Chap. 6. Oxford University Press, Oxford 2010.
- [22] KELLER J.B.: Stochastic equations and wave propagation in random media. Proc. Symp. App. Math. 16(1964), 145–170.
- [23] KARAL F.C., KELLER J.B.: Elastic, electro-magnetic and other waves in a random medium. J. Mathematical Phys. 5(1964), 537–547.
- [24] KELLER J.B., KARAL F.C.: Effective dielectric constant, permeability and conductivity of a random medium and the and the velocity and attenuation of coherent waves. J. Math. Phys. 7(1966), 661-670.
- [25] CHOW P. L.: Thermoelastic wave propagation in a random medium and some related problems. Int. J. Eng. Sci 11(1973), 953-971.
- [26] CHEN Y.M., TIEN C.L.: Penetration of temperature waves in a random medium. J. Maths. Physics XLVI, 2, 1967.
- [27] BHATTACHARYYA R.K.: On wave propagation in a Random magneto-thermoviscoelastic medium. Indian J. Pure appl. Math. 17(1986), 705–725.
- [28] BHATTACHARYYA R.K.: On reflection of waves from the boundary of a random elastic semi-infinite medium. Pure App. Geophysics (PAGEOPH) 146(1996), 3-4, 677–688.
- [29] BERA R.K.: Propagation pf waves in a random magneto-thermoelastic medium. Computers and Mathematics with Applications 36(1998), 9, 85–102.
- [30] CHERNOV L.A.: Wave Propagation in a Random Medium. McGraw Hill, 1960.
- [31] BERAN M.J., MCCOY J.J.: Mean field variation in random media. Quart. App. Math. 28(1970), July, 245–258.
- [32] BERAN M.J., FRANKENTHAL S., DESHMUKH V., WHITMAN A.M.: Propagation of radiation in time-dependent three-dimensional random media. Wave Random Complex 18(2008), 3, 435–460.
- [33] SOBCZYK K.: Elastic wave propagation in a discrete random medium. Acta Mechanica 25(1976), 13–18.
- [34] WENZEL A.R.: Radiation and attenuation of waves in a random medium. J. Acoust Soc. Am. 71(1982), 1, 26–35.
- [35] SOBCZYK K., WEDRYCHOWICZ S., SPENCER B.F. Jr: Dynamics of structural systemswith spatial randomness. Int. J. Solids Struct. 33(1996), 11, 1651–1669.
- [36] FRANKENTHAL S., BERAN M.J.: Propagation in one-dimensionally stratified time-independent scattering media. Wave Random Complex 17(2007), 2, 189–212.
- [37] USCINSKI B.J.: Intensity fluctuations in a moving random medium. Wave Random Comples 15(2005), 4, 437-450.
- [38] FRISCH U.: Wave Propagation in Random Media. In: Probabilistic Methods in Applied Mathematics (A.T. Bharucha-Reid, Ed.), 1, 76–198, Academic Press, New York 1968.
- [39] CHEN K.K., SOONG T.T.: Covariance properties of waves propagating in a random medium. J. Acoustical. Society of America 49(1971), 5(2), 1639–1642.
- [40] SOONG T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York 1973.
- [41] ISHIMARU A.: Wave Propagation and Scattering in Random Media, Oxford University Press, Oxford 1978.
- [42] CHOUDHURY M., BASU U., BHATTACHARYYA R.K.: Wave propagation in a rotating randomly varying granular generalized thermoelastic medium. Comput. Math. Appl. 70(2015), 2803-2821.
- [43] ADOMIAN GEORGE: Non-Linear Stochastic Operator Equations, Academic Press, Harcourt Brace Jovanovich, New York, London 1986.
- [44] PODLUBNY I.: Fractional Differential Equations. Academic Press. San Diego, New York, London 1999.
- [45] POVSTENKO Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28(2008), 83-102.
- [46] LAVOINE J.: Methods de Calcul II, Calcul Symbolique Distributions et pseudofunctions. Centre National de la Recherche Scientifique, Paris 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ccf4b0-cf96-48f4-ad86-c449b4d01e1d