PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametry środowiskowe oraz procesowe fermentacji metanowej prowadzonej w trybie ciągłym (CSTR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Environmental and process parameters of methane fermentation in continuosly stirred tank reactor (CSTR)
Języki publikacji
PL
Abstrakty
PL
Kluczowym wskaźnikiem procesu fermentacji metanowej, rzutującym na opłacalność funkcjonowania biogazowni, jest wydajna produkcja metanu w przeliczeniu na 1 m3 objętości czynnej reaktora. Zależy ona w dużej mierze od właściwego doboru parametrów środowiskowych oraz procesowych. W niniejszej pracy zebrano i przeanalizowano wpływ najważniejszych parametrów fermentacji metanowej prowadzonej w trybie ciągłym (CSTR), do których zalicza się temperaturę, pH, zawartość składników pokarmowych i stosunek C/N w podawanym podłożu, występowanie inhibitorów oraz obciążenie objętościowe reaktora fermentacyjnego, czas retencji i mieszanie reaktora fermentacyjnego. Nadal jednak wpływ wielu czynników pozostaje nieznany, stąd istnieje konieczność dalszych, kompleksowych badań.
EN
A key indicator of methane fermentation process which influences the cost-effectiveness of the biogas plant is efficient production of methane per 1 m3 of reactor. It depends on a proper selection of environmental and process parameters. This article present collected and analyzed effect of most important parameters of continuous methane fermentation (CSTR), which include temperature, pH, nutrient content and the C/N ratio in the feed medium, the presence of inhibitors, and the volume load of reactor, retention time and mixing of digestion reactor. Still, the impact of many factors remain unknown, hence there is a need for more comprehensive studies.
Rocznik
Tom
Strony
153--160
Opis fizyczny
Bibliogr. 74 poz., tab., rys.
Twórcy
  • Instytut Inżynierii Biosystemów, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 50, 60-637 Poznań
autor
  • Instytut Inżynierii Biosystemów, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 50, 60-637 Poznań
autor
  • Instytut Inżynierii Biosystemów, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 50, 60-637 Poznań
autor
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 48, 60-637 Poznań
autor
  • Instytut Inżynierii Biosystemów, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 50, 60-637 Poznań
autor
  • Instytut Inżynierii Biosystemów, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 50, 60-637 Poznań
Bibliografia
  • 1. Ahmad A., Ghufran R., Wahid Z. 2011. Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Rev. Environ. Sci. Biotechnol. 10, 353–376.
  • 2. Al Seadi T. 2001. Good practice in quality management of AD residues from biogas production. IEA Bioenergy, Task 24 – Energy from biological conversion of organic waste.
  • 3. Angelidaki I., Ahring B.K. 1993. Thermophilic anaerobic digestion of livestock waste: effect of ammonia. Appl. Microbiol. Biotechnol. 38, 560–564.
  • 4. Appels L., Baeyens J., Degrève J., Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34, 755–781.
  • 5. Bayr S., Pakarinen O., Korppoo A., Liuksia S., Väisänen A., Kaparaju P., Rintal A.J. 2012. Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresour. Technol. 120, 106–113.
  • 6. Bensmann A., Hanke-Rauschenbach R., Heyer R., Kohrs F., Benndorf D., Kausmannd R., Plöchl M., Heiermann M., Reichl U., Sundmacher K. 2016. Diagnostic concept for dynamically operated biogas production plants. Renewable Energy 96, 479–489.
  • 7. Bischofsberger W., Dichtl N., Rosenwinkel K., Seyfried C., Böhnke B. 2005. Anaerobtechnik. Springer-Verlag, Berlin, Heidelberg.
  • 8. Bouallagui H., Ben Cheikh R., Marouani L., Hamdi M. 2003. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology 86, 85–89.
  • 9. Bouallagui H., Rachdi B., Gannoun H., Hamdi M. 2009. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable wastein anaerobic sequencing batch reactors. Biodegradation 20, 401–409.
  • 10. Braun R. 1982. Biogas – Methangärung organischer Abfallstoffe. Springer Verlag Wien, New York.
  • 11. Bryers J.D. 1985. Structured modelling of the anaerobic digestion of biomass particulates. Biotechnology and Bioengineering 27, 638–649.
  • 12. Chandra R., Takeuchi H., Hasegawa T. 2012a. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews 16(3), 1462–1476.
  • 13. Chandra R., Vijay V.K., Subbarao P.M.V., Khura T.K. 2012b. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl. Energy 93, 148–159.
  • 14. Chen Y., Cheng J.J., Creamer K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99, 4044–4064.
  • 15. Choong Y.Y., Norli I., Abdullah A.Z., Yhaya M.F. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology 209, 369–379.
  • 16. Dach J., Koszela K., Boniecki P., Zaborowicz M., Lewicki A., Czekała W., Skwarcz J., Wei Qiao, Piekarska-Boniecka H., Białobrzewski I. 2016. The use of neural modelling to estimate the methane production from slurry fermentation processes. Renewable and Sustainable Energy Reviews 56, 603–610
  • 17. De Vrieze J., Hennebel T., Boon N., Verstraete W. 2012. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 112, 1–9.
  • 18. Del-Rubia M.A., Perez M., Romero L.I., Sales D. 2002. Anaerobic mesophilic and thermophilic municipal sludge digestion. Chem. Biochem. Eng. Qual. 16, 119–124.
  • 19. Deublein D., Steinhauser A. 2008. Biogas from waste and renewable sources: an introduction. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • 20. Diekert G., Konheiser U., Piechulla K., Thauer R.K. 1981. Nickel requirement and factor F430 content of methanogenic bacteria. J. Bacteriol. 148, 459–464.
  • 21. Dohanyos M., Zabranska J., Spinosa L., Vesilind P. 2001. Sludge into biosolids – processing, disposal, utilization (1st ed.). IWA Publishing. London.
  • 22. Ekama G.A., Wentzel M.C. 2008. Organic material removal. Biol Wastewater Treat: Princ, Modell Des 53.
  • 23. Gerardi M.H. 2003. The microbiology of anaerobic digesters, waste water microbiology series. John Wiley & Sons, Inc, Hoboken, New Jersey.
  • 24. Hashimoto A.G. 1986. Ammonia inhibition of methanogenesis from cattle wastes. Agric. wastes, 17, 241–261.
  • 25. Hausinger R.P. 1987. Nickel utilization by microorganisms. Microbiol. Rev. 51, 22–24.
  • 26. Hill D.T. 1982. A comprehensive dynamic model for animal waste methanogenesis. Transactions of the ASAF 25, 1374–1380.
  • 27. Jarrell K.F., Saulnier M., Ley A. 1987. Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can. J. Microbiol. 33, 551–555.
  • 28. Johnson J.L., Bastian N.R., Schauer N.L., Ferry J.G., Rajagopalan K.V. 1991. Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum. FEMS Microbiol. Lett. 77, 213–216.
  • 29. Kaltschmitt M., Hartmann H. 2001. Energie aus Biomasse – Grundlagen, Techniken und Verfahren. Springer Verlag Berlin, Heidelberg, New York.
  • 30. Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20, 355–365.
  • 31. Khalid A., Arshad M., Anjum M., Mahmood T., Dawson L. 2011. The anaerobic digestion of solid organic waste. Waste Manage. 31, 1737–1744.
  • 32. Kim J., Park C., Kim T.H., Lee M., Kim S., Kim S.W., Lee J. 2003a. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering 95(3), 271–275.
  • 33. Kim J.K., Oh B.R., Chun Y.N., Kim S.W. 2006. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 102, 328–332.
  • 34. Kim M., Gomec C.Y., Ahn Y., Speece R.E. 2003b. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology 24, 1183–1190.
  • 35. Kleyböcker A., Liebrich M., Verstraete W., Kraume M., Würdemann H. 2012. Early warning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters. Bioresource Technology 123, 534–541.
  • 36. Kroeker E.J., Schulte D.D., Sparling A.B., Lapp H.M. 1979. Anaerobic treatment process stability. J. Water Pollut. Control Fed. 51, 718–727.
  • 37. Kroiss H. 1985. Anaerobe Abwasserreinigung. Wiener Mitteilungen Bd. 62, Wien.
  • 38. Kryukov G.V., Gladyshev V.N. 2004. The prokaryotic selenoproteome. EMBO Rep. 5, 538–543.
  • 39. Kugelman I.J., McCarty P.L. 1964. Cation toxicity and stimulation in anaerobic waste treatment. J. Water Pollut. Control Fed. 37, 97–116.
  • 40. Kumaran P., Hephzibah D., Sivasankari R., Saifuddin N., Shamsuddin A. H. 2016. A review on industrial scale anaerobic digestion systems deployment in Malaysia: Opportunities and challenges. Renewable and Sustainable Energy Reviews 56, 929–940.
  • 41. Lindmark J., Thorin E., Fdhila R.B., Dahlquista E. 2014. Effects of mixing on the result of anaerobic digestion: Review. Renewable and Sustainable Energy Reviews 40, 1030–1047.
  • 42. Lyberatos G., Skiadas I.V. 1999. Modelling of anaerobic digestion – a review. Global Nest: Int J 1, 63–76.
  • 43. Mao C., Feng Y., Wang X., Ren G. 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews 45, 540–555.
  • 44. Maurer M. Winkler J-P. 1980. Biogas – Theoretische Grundlagen, Bau und Betrieb von Anlagen. Verlag C.F.Müller. Karlsruhe.
  • 45. McCarty P.L. 1964. Anaerobic waste treatment fundamentals. Public Works 95(9), 107–112.
  • 46. Mosey F.E., Fernandes X.A. 1989. Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugars. Water Sci. Technol. 21, 187–196.
  • 47. Müller V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345–6353.
  • 48. Murakami E., Ragsdale S.W. 2000. Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/ acetyl-CoA synthase complex from Methanosarcina thermophile. J. Biol. Chem. 275, 4699–4707.
  • 49. Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M. 2011. Budowa i eksploatacja biogazowni rolniczych. Poradnik dla inwestorów zainteresowanych budową biogazowni rolniczych. Wydawnictwo ITP. Warszawa.
  • 50. Nguyen D., Gadhamshetty V., Nitayavardhana S., Khanal S. K. 2015. Automatic process control in anaerobic digestion technology: A critical review. Bioresource Technology 193, 513–522.
  • 51. Oleszkiewicz J.A., Sharma V.K. 1990. Stimulation and inhibition of anaerobic processes by heavy metals – a review. Biol. Wastes 31, 45–67.
  • 52. Osuna M.B., Iza J., Zandvoort M., Lens P.N.L. 2003. Essential metal depletion in an anaerobic reactor. Water Sci. Technol. 48, 1–8.
  • 53. Parkin G.F., Lynch N.A., Kuo W., Van Keuren E.L., Bhattacharya S.K. 1990. Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Control Fed. 62, 780–788.
  • 54. Punal A., Trevisan M., Rozzi A., Lema J. 2000. Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Res, 34, 2614–2619.
  • 55. Riau V., De la Rubia M.A., Pérez M. 2010. Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: a semi-continuous study. Bioresour. Technol. 101, 2706–2712.
  • 56. Satjaritanun P. , Khunatorn Y., Vorayos N., Shimpalee S., Bringley E. 2016. Numerical analysis of the mixing characteristic for napier grass in the continuous stirring tank reactor for biogas production. Biomass and Bioenergy 86, 53–64.
  • 57. Sawatdeenarunat C., Surendra K. C., Takara D., Oechsner H., Khanal S. K. 2015. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour. Technol. 178, 178–186.
  • 58. Schauer N.L., Ferry J.G. 1982. Properties of formate dehydrogenase in Methanobacterium formicium. J. Bacteriol. 150, 1–7.
  • 59. Schmidt J.E., Ahring B.K. 1993. Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors. Enzyme Microbiol. Technol. 15, 304–310.
  • 60. Schmidt T., Ziganshin A M., Nikolausz M., Scholwin F., Nelles M., Kleinsteuber S., Pröter J. 2014. Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors – Performance and methanogenic community composition. Biomass and Bioenergy 69, 241–248.
  • 61. Schonheit P.M., Thauer R.K. 1979. Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch. Microbiol. 123, 105–107.
  • 62. Stock T., Rother M. 2009. Selenoproteins in Archaea and Gram-positive bacteria. Biochim. Biophys. Acta, 1790, 1520–1532.
  • 63. Takashima M., Speece R.E. 1990. Mineral requirements for methane fermentation. Crit. Rev. Environ. Control 19, 465–479.
  • 64. Thauer R.K., Diekert G., Schonheit P. 1980. Biological role of nickel. Trends Biochem. Sci. 5, 304–306.
  • 65. Thauer R.K., Kaster A.K., Seedorf H., Buckel W., Hedderich R., Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591.
  • 66. Ward A. J., Hobbs P. J., Holliman P. J., Jones D. J. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology 99, 7928–7940.
  • 67. Wellinger A., Baserga U., Edelmann W., Egger K., Seiler B. 1991. Biogas-Handbuch, Grundlagen – Planung – Betrieb landwirtschaftlicher Anlagen. Verlag Wirz – Aarau.
  • 68. Yen H.W., Brune D.E. 2007. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol. 98, 130–134.
  • 69. Yu H.Q., Fang H.H.P. 2002. Acidogenesis of dairy wastewater at various pH levels. Water Science and Technology 45, 201–206.
  • 70. Zandvoort M.H., van Hullebusch E.D., Gieteling J., Lens P.N.L. 2006. Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enzyme Microb. Technol. 39, 337–346.
  • 71. Zeikus J.G. 1977. The biology of methanogenic bacteria. Journal of Bacteriological Reviews, 41(2), 514–541.
  • 72. Zellner G., Alten C., Stackebrandt E., Conway E., Winter J. 1987. Isolation and characterization of Methanocorpusulum parvum Gen., a new tungsten requiring coccoid methanogen. Arch. Microbiol. 147, 13–20.
  • 73. Zhang Q., Hu J., Lee D. J. 2016. Biogas from anaerobic digestion processes: Research updates. Renewable Energy 98, 108–119.
  • 74. Zhang T., Liu L., Song Z., Ren G., Feng Y., Han X. 2013. Biogas production by co-digestion of goat manure with three crop residues. PLoS One 8(6).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ca1d28-e3d5-42c1-a8a5-77d50f111bfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.