Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, concepts of Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for impulsive evolution equations are raised. Ulam-Hyers-Rassias stability results on a compact interval and an unbounded interval are presented by using an impulsive integral inequality of the Gronwall type. Two examples are also provided to illustrate our results. Finally, some extensions of the Ulam-Hyers-Rassias stability for the case with infinite impulses are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
639--657
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Guizhou University Department of Mathematics Guiyang, Guizhou 550025, P.R. China
- Guizhou Normal College, Guiyang School of Mathematics and Computer Science Guizhou 550018, P.R. China
autor
- Comenius University Faculty of Mathematics, Physics and Informatics Department of Mathematical Analysis and Numerical Mathematics Bratislava, Slovakia
- Slovak Academy of Sciences Mathematical Institute Štefánikova 49, 814 73 Bratislava, Slovakia
autor
- Xiangtan University Department of Mathematics Xiangtan, Hunan 411105, P.R. China
Bibliografia
- 1] Sz. András, J.J. Kolumbán, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal.: TMA 82 (2013), 1–11.
- [2] Sz. András, A.R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput. 219 (2013), 4853–4864.
- [3] D.D. Bainov, V. Lakshmikantham, P.S. Simeonov, Theory of impulsive differential equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Singapore, 1989.
- [4] D.D. Bainov, P.S. Simeonov, Integral inequalities and applications, Kluwer Academic Publishers, Dordrecht, 1992.
- [5] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, vol. 2 of Contemporary Mathematics and Its Applications, Hindawi, New York, NY, USA, 2006.
- [6] J. Brzdek, N. Brillouët-Belluot, K. Cieplinski, B. Xu, Ulam’s type stability, Abstr. Appl. Anal. 2012 (2012), Article ID 329702, 2 pages, doi:10.1155/2012/329702.
- [7] M. Burger, N. Ozawa, A. Thom, On Ulam stability, Isr. J. Math. 193 (2013), 109–129.
- [8] L. Cadariu, Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Ed. Univ. Vest Timisoara, Timisoara, 2007.
- [9] D.S. Cimpean, D. Popa, Hyers-Ulam stability of Euler’s equation, Appl. Math. Lett. 24 (2011), 1539–1543.
- [10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224.
- [11] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, 1998.
- [12] B. Hegyi, S.-M. Jung, On the stability of Laplace’s equation, Appl. Math. Lett. 26 (2013), 549–552.
- [13] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [14] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135–1140.
- [15] J.H. Liu, Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst. 6 (1999), 77–85.
- [16] N. Lungu, D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl. 385 (2012), 86–91.
- [17] T. Miura, S. Miyajima, S.-E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286 (2003), 136–146.
- [18] T. Miura, S. Miyajima, S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90–96.
- [19] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 259–270.
- [20] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141–146.
- [21] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [22] Th.M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [23] J.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.
- [24] J.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23–130.
- [25] H. Rezaei, S.-M. Jung, Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), 244–251.
- [26] I.A. Rus, Ulam stability of ordinary differential equations, Studia Univ. “Babes Bolyai” Mathematica 54 (2009), 125–133.
- [27] I.A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010), 103–107.
- [28] A.M. Samoilenko, N.A. Perestyuk, Impulsive differential equations, vol. 14 of World
- Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, Singapore, 1995.
- [29] A.M. Samoilenko, N.A. Perestyuk, Stability of solutions of differential equations with impulse effect, Differ. Equations 13 (1977), 1981–1992.
- [30] S.-E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach spacevalued differential equation [formula], Bull. Korean Math. Soc. 39 (2002), 309–315.
- [31] J. Wang, Y. Zhou, M. Fe˘ckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl. 64 (2012), 3389–3405.
- [32] J. Wang, M. Fe˘ckan, Y. Zhou, Ulam’s type stability of impulsive ordinary differential equations, J. Math. Anal. Appl. 395 (2012), 258–264.
- [33] X. Li, J. Wang, Ulam-Hyers-Rassias stability of semilinear differential equations with impulse, Electron. J. Diff. Equ. 2013 (2013) 172, 1–8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ca0371-47d8-49a1-80e7-84879ee081eb