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Abstract. In this paper, concepts of Ulam-Hyers stability, generalized Ulam-Hyers stability,
Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for impulsive evo-
lution equations are raised. Ulam-Hyers-Rassias stability results on a compact interval and
an unbounded interval are presented by using an impulsive integral inequality of the Gronwall
type. Two examples are also provided to illustrate our results. Finally, some extensions of
the Ulam-Hyers-Rassias stability for the case with infinite impulses are given.
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1. INTRODUCTION

As stated in Brzdęk et al ’s paper [6], the stability of functional equations was first
presented by Ulam in 1940 at Wisconsin University and concerned approximate ho-
momorphisms. The pursuit of solutions to this problem, to its generalizations and
modifications for various classes of difference, functional, differential, integral and
impulsive equations, is an expanding area of research and has led to the development
of what is now quite often called Ulam’s type stability theory or the Ulam-Hyers
stability theory. This theory has been the subject of many papers as well as talks
presented at various conferences, especially at the series of International Conference
on Functional Equations and Inequalities conferences organized by the Department
of Mathematics of the Pedagogical University in Cracow since 1984.

For the case of Banach spaces, Hyers [10] answered this question completely in
1941. Thereafter, a new stability concept, Ulam-Hyers stability, was named by re-
searchers. In 1978, Rassias [22] provided an extension of the Ulam-Hyers stability
by introducing new function variables. As a result, another new stability concept,
Ulam-Hyers-Rassias stability, was named by mathematicians.
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Many researchers paid attention to the stability properties of all kinds of equations
since 1940. We emphasize that Ulam’s type stability problems have been taken up by a
large number of mathematicians and the study of this area has grown to be one of the
most important subjects in mathematical analysis. For the advanced contributions
on such problems, we refer the readers to András and Kolumbán [1], András and
Mészáros [2], Burger et al. [7], Cădariu [8], Cimpean and Popa [9], Hyers [11], Hegyi
and Jung [12], Jung [13,14], Lungu and Popa [16], Miura et al. [17,18], Obłoza [19,20],
Rassias [23, 24], Rezaei et al. [25], Rus [26, 27], Takahasi et al. [30] and Wang et al.
[31–33].

As a matter of fact, Ulam-Hyers-Rassias stability of impulsive evolution equations
has not yet been studied as far as we are aware. So motivated by recent works [27,31,
32], we will study the Ulam-Hyers-Rassias stability of the following impulsive evolution
equations: {

x′(t) = Ax(t) + f(t, x(t)), t ∈ J ′ := J \ {tk}k∈M ,
∆x(tk) = Ik(x(t−k )), k ∈M,

(1.1)

where the following basic assumptions are imposed:

– either J = [0, T ] for some T > 0 or J = R+ := [0,∞). If J = [0, T ], then
M = {1, 2, . . . ,m}, if J = R+ then either M = {1, . . . ,m} or M = N. We set
M0 := M ∪ {0};

– the linear unbounded operator A: D(A) ⊆ X → X is the generator of a
C0-semigroup {T (t), t ≥ 0} on a Banach space X; the corresponding norm on
X is denoted by ‖ · ‖;

– the function f : J ×X → X and impulsive operators Ik : X → X are specified in
Section 4;

– we set t0 = 0, and tm+1 = T for J = [0, T ], and tm+1 =∞ for J = R+; the fixed
time sequence {tk}k∈M0 is increasing, i.e., tk < tk+1 for any k ∈M0;

– x(t+k ) = limε→0+ x(tk + ε) and x(t−k ) = limε→0− x(tk + ε) represent the right and
left limits of x(t) at t = tk, respectively;

– ∆x(tk) := x(t+k )− x(tk
−).

Many processes studied in applied sciences are represented by differential equa-
tions. However, the situation is quite different in many modeled phenomena that have
a sudden change in their states such as mechanical systems with impact, biological
systems such as heart beats, blood flows, population dynamics, theoretical physics,
pharmacokinetics, mathematical economy, biotechnology processes, chemistry, engi-
neering, control theory, medicine and so on. Adequate mathematical models of such
processes are systems of differential equations with impulses. The impulsive conditions
are combinations of traditional initial value problems and short-term perturbations
whose duration can be negligible in comparison with the duration of the process. There
are many good monographs on impulsive differential equations, like Samoilenko et al.
[28], Bainov et al. [3], and Benchohra et al. [5]. Next, our equation (1.1) represents
one of the most general form of semilinear evolution equations in Banach spaces with
initial value conditions on either finite or infinite time space involving either finite
or infinite impulses. In Section 5, we present two simple examples of one-dimensional
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diffusion processes with sudden changes of either the temperature of the rod or the
chemical concentration of the substance.

In order to study our problems, we introduce four new types of Ulam stabili-
ties (see Definitions 3.1–3.4): Ulam-Hyers stability, generalized Ulam-Hyers stabil-
ity, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for
equation (1.1) in Banach spaces. Here, we remark that we provide an extension
of the Ulam-Hyers-Rassias stability by introducing a necessary modifications due
to the impulsive conditions ∆x(tk) = Ik(x(t−k )) in equation (1.1). The novelty of
our paper is that we consider a new type of equation (1.1) and then present these
new Ulam-Hyers-Rassias stability definitions and finally find reasonable conditions
on (1.1) for showing that (1.1) is Ulam-Hyers-Rassias stable in the sense of these
definitions. We think that the considered conditions on the equation (1.1) are optimal
and compare to the above mentioned papers. For the case with infinite impulses, some
extensions of Ulam-Hyers-Rassias stability are given in Section 6.

Finally we note that the current results have also practical meaning in the following
sense. Consider an evolution process with sudden changes of states at some fixed times
which can be modeled by (1.1). Assume that we can measure the state of the process
at any time to get a function x(·). Putting this x(·) into (1.1), in general, we do not
expect to get a precise solution of (1.1). All that is required is to get a function which
satisfies these suitable approximation inequalities (3.1), (3.2) and (3.3) of Section 3,
and (6.1) and (6.2) of Section 6. In other words, our results of Sections 4 and 6
guarantee that there is a solution y(·) of (1.1) close to the measured output x(·)
and close is defined in the sense of Ulam-Hyers-Rassias stability. This is our main
original contribution of this paper. This is quite useful in many applications such
as numerical analysis, optimization, biology and economics, where finding the exact
solution is quite difficult. If the stochastic effects are small, it also helps to use a
deterministic model to approximate a stochastic one.

2. PRELIMINARIES

Throughout this paper, let B(X) be the Banach space of all linear and bounded
operators on the Banach space X. The corresponding norm on B(X) is denoted
by ‖ · ‖B(X). Since the linear unbounded operator A is the infinitesimal generator
of a C0-semigroup {T (t), t ≥ 0} on X, there exist N ≥ 1 and ω ∈ R such that
‖T (t)‖B(X) ≤ Neωt for t ≥ 0. Denote M = supt∈J ‖T (t)‖B(X) for J = [0, T ]. Let us
introduce a vector space:

PC(J,X) := {x : J → X|x ∈ C((tk, tk+1], X),

there exist x(t−k ) and x(t+k ) with x(t−k ) = x(tk) for any k ∈M0}.

We also consider C(J ′, D(A)) with the graph norm on D(A) and the usual C1(J ′, X).
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Definition 2.1. By a PC-mild solution of the following impulsive Cauchy problem
x′(t) = Ax(t) + f(t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k ∈M0,

x(0) = x0, x0 ∈ X,
(2.1)

we mean a function x ∈ PC(J,X) which satisfies

x(t) = T (t)x0 +

t∫
0

T (t− s)f(s, x(s))ds+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.

Remark 2.2. The existence and uniqueness of a mild solution of the problem (2.1)
have been discussed by Liu (see [15, Theorem 2.1]) when f and Ik satisfy the standard
Lipschtiz and linear growth conditions respectively.

The following impulsive integral inequality of Gronwall type

u(t) ≤ a+

t∫
0

b(s)u(s)ds+
∑

0<tk<t

βku(tk), t ≥ 0, (2.2)

has been discussed by Samoilenko and Perestyuk [29] to derive a priori bound of the
solution of impulsive problems of the form{

u′(t) = f(t, u(t)), t 6= tk,

∆u(tk) = Ik(u(t−k )), t = tk.

In order to deal with Ulam’s type stability, we need to extend (2.2) the following
result by Bainov and Simeonov (see [4, Theorem 16.4]).

Lemma 2.3. Let the following inequality hold:

u(t) ≤ a(t) +

t∫
0

b(s)u(s)ds+
∑

0<tk<t

βku(t−k ), t ≥ 0, (2.3)

where u, a, b ∈ PC(R+,R+), a is nondecreasing and b(t) > 0, βk > 0, k ∈ M. Then,
for t ∈ R+, the following inequality is valid:

u(t) ≤ a(t) (1 + β)
k

exp

( t∫
0

b(s)ds

)
, t ∈ (tk, tk+1], k ∈M0, (2.4)

where β = supk∈M{βk}.
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Remark 2.4. (i) If we replace βk in (2.3) by nondecreasing functions βk(t) > 0 for
t ≥ 0, then (2.4) turns to the following inequality

u(t) ≤ a(t)
∏

0<tk<t

(1 + βk(t)) exp

( t∫
0

b(s)ds

)
, t ∈ (tk, tk+1], k ∈M0, (2.5)

(see [4, Theorem 16.4]).
(ii) As an extension of (2.3), a generalized impulsive singular integral inequality

of Gronwall type

u(t) ≤ a(t) + b

t∫
0

(t− s)α−1u(s)ds+
∑

0<tk<t

βku(t−k ), α, b > 0, t ≥ 0,

has been reported by Wang et al. (see [31, Lemma 2.8]).

3. BASIC CONCEPTS AND REMARKS

In this section, we introduce the concepts of Ulam’s type stability for equation (1.1).
Set PC(J,R+) := {x ∈ PC(J,R) : x(t) ≥ 0}. Let ε > 0, ψ ≥ 0 and ϕ ∈

PC(J,R+). We consider the following inequalities:{
‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ ε, t ∈ J ′,
‖∆y(tk)− Ik(y(t−k ))‖ ≤ ε, k ∈M,

(3.1)

and {
‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ ϕ(t), t ∈ J ′,
‖∆y(tk)− Ik(y(t−k ))‖ ≤ ψ, k ∈M,

(3.2)

and {
‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ εϕ(t), t ∈ J ′,
‖∆y(tk)− Ik(y(t−k ))‖ ≤ εψ, k ∈M.

(3.3)

Definition 3.1. Equation (1.1) is Ulam-Hyers stable if there exists a real number
cf,M > 0 such that for each ε > 0 and for each solution y ∈ PC(J,X)∩C(J ′, D(A))∩
C1(J ′, X) of the inequality (3.1) there exists a mild solution x ∈ PC(J,X) of the
equation (1.1) with

‖y(t)− x(t)‖ ≤ cf,Mε, t ∈ J.

Definition 3.2. The equation (1.1) is generalized Ulam-Hyers stable if there ex-
ists θf,M ∈ C(R+,R+), θf,M(0) = 0 such that for each solution y ∈ PC(J,X) ∩
C(J ′, D(A)) ∩ C1(J ′, X) of the inequality (3.1) there exists a mild solution x ∈
PC(J,X) of the equation (1.1) with

‖y(t)− x(t)‖ ≤ θf,M(ε), t ∈ J.
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The following definitions will extend the original (generalized) Ulam-Hyers-Rassias
stability concepts for the equations without impulses to equations with impulses.

Definition 3.3. Equation (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ) if
there exists cf,M,ϕ > 0 such that for each ε > 0 and for each solution y ∈ PC(J,X)∩
C(J ′, D(A))∩C1(J ′, X) of inequality (3.3) there exists a mild solution x ∈ PC(J,X)
of equation (1.1) with

‖y(t)− x(t)‖ ≤ cf,M,ϕε(ϕ(t) + ψ), t ∈ J.

Definition 3.4. Equation (1.1) is generalized Ulam-Hyers-Rassias stable with respect
to (ϕ,ψ) if there exists cf,M,ϕ > 0 such that for each solution y ∈ PC(J,X) ∩
C(J ′, D(A))∩C1(J ′, X) of inequality (3.2) there exists a mild solution x ∈ PC(J,X)
of equation (1.1) with

‖y(t)− x(t)‖ ≤ cf,M,ϕ(ϕ(t) + ψ), t ∈ J.

We note that:

(i) Definition 3.3 for ϕ(t) = ψ = 1 =⇒ Definition 3.1 =⇒ Definition 3.2,
(ii) Definition 3.3 =⇒ Definition 3.4.

Remark 3.5. It follows directly from inequality (3.3) that a function y ∈ PC(J,X)∩
C(J ′, D(A)) ∩ C1(J ′, X) is a solution of inequality (3.3) if and only if there is g ∈
C(J ′, X), ψ ≥ 0 and a sequence gk, k ∈M (which depend on y) such that:

(i) ‖g(t)‖ ≤ εϕ(t) and ‖gk‖ ≤ εψ, t ∈ J ′, k ∈M,
(ii) y′(t)−Ay(t)− f(t, y(t)) = g(t), t ∈ J ′,
(iii) ∆y(tk)− Ik(y(t−k )) = gk, k ∈M.

Remark 3.6. If y ∈ PC(J,X) ∩ C(J ′, D(A)) ∩ C1(J ′, X) is a solution of inequality
(3.3) then y is a solution of the following integral inequality

∥∥∥∥y(t)− T (t)y(0)−
t∫

0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤Mε

mψ +

t∫
0

ϕ(s)ds

 , t ∈ (tk, tk+1], k ∈M0,

(3.4)

where we set
∑0
i=1 = 0.

Proof. It follows from Remark 3.5 that we have{
y′(t) = Ay(t) + f(t, y(t)) + g(t), t ∈ J ′,
∆y(tk) = Ik(y(t−k )) + gk, k ∈M.
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Thus the formula of solution is (see [21, p. 105])

y(t) = T (t)y(0) +

k∑
i=1

T (t− ti)Ii(y(t−i )) +

k∑
i=1

T (t− ti)gi+

+

t∫
0

T (t− s)f(s, y(s))ds+

t∫
0

T (t− s)g(s)ds, t ∈ (tk, tk+1], k ∈M0.

As a result, we find that∥∥∥∥y(t)− T (t)y(0)−
t∫

0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤

k∑
i=1

‖T (t− ti)‖B(X)‖gi‖+

t∫
0

‖T (t− s)‖B(X)‖g(s)‖ds ≤

≤Mε

mψ +

t∫
0

ϕ(s)ds

 .

The proof is complete.

Similarly to Remark 3.6, we have the following results.

Remark 3.7. If y ∈ PC(J,X) ∩ C(J ′, D(A)) ∩ C1(J ′, X) is a solution of inequality
(3.1) then y is a solution of the following integral inequality∥∥∥∥y(t)− T (t)y(0)−

t∫
0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤M (m+ t) ε, t ∈ (tk, tk+1], k ∈M0.

Remark 3.8. If y ∈ PC(J,X) ∩ C(J ′, D(A)) ∩ C1(J ′, X) is a solution of inequality
(3.2) then y is a solution of the following integral inequality∥∥∥∥y(t)− T (t)y(0)−

t∫
0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤M

mψ +

t∫
0

ϕ(s)ds

 , t ∈ (tk, tk+1], k ∈M0.

4. MAIN RESULTS

In this section, we will present Ulam-Hyers-Rassias stability results for equation (1.1)
on a compact interval J and unbounded interval R+.
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4.1. ULAM-HYERS-RASSIAS STABILITY RESULTS ON J = [0, T ]

We introduce the following assumptions:
(H1) f : J × X → X satisfies the Carathéodory conditions and there exists a

function Lf ∈ C(J,R+) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖

for almost each (a.e.) t ∈ J and all u, v ∈ X.
(H2) Ik: X → X and there exist constants ρk > 0 such that

‖Ik(u)− Ik(v)‖ ≤ ρk‖u− v‖

for all u, v ∈ X and k = 1, 2, . . . ,m.

Remark 4.1. One can use the standard methods via Banach contraction principle
in Liu [15] to derive the existence and uniqueness of mild solutions of equation (1.1)
with initial value condition x(0) = x0 under the assumptions (H1) and (H2).

(H3) There exists a constant λϕ > 0 and a nondecreasing function ϕ ∈ PC(J,R+)
such that

t∫
0

ϕ(s)ds ≤ λϕϕ(t) for each t ∈ J.

Under the above assumptions, we consider equation (1.1) and inequality (3.3).

Theorem 4.2. Assume (H1)–(H3) are satisfied. Then equation (1.1) is Ulam-Hyers-
-Rassias stable with respect to (ϕ,ψ).

Proof. Let y ∈ PC(J,X)∩C(J ′, D(A))∩C1(J ′, X) be a solution of inequality (3.3).
Let x be the unique mild solution of the impulsive Cauchy problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = y(0).

Then we have

x(t) =



T (t)y(0) +
t∫

0

T (t− s)f(s, x(s))ds, t ∈ [0, t1],

T (t)y(0) + T (t− t1)I1(x(t−1 )) +
t∫

0

T (t− s)f(s, x(s))ds, t ∈ (t1, t2],

...

T (t)y(0) +
∑m
k=1 T (t− tk)Ik(x(t−k )) +

t∫
0

T (t− s)f(s, x(s))ds, t ∈ (tm, T ].
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Like in (3.4), by inequality (3.3), for each t ∈ (tk, tk+1], we have∥∥∥∥y(t)− T (t)y(0)−
t∫

0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤M

 m∑
i=1

‖gi‖+

t∫
0

ϕ(s)ds

 ≤
≤Mε(m+ λϕ)(ϕ(t) + ψ).

Thus, for each t ∈ (tk, tk+1], we obtain

‖y(t)− x(t)‖ ≤
∥∥∥∥y(t)− T (t)y(0)−

k∑
i=1

T (t− ti)Ii(y(t−i ))−
t∫

0

T (t− s)f(s, y(s))ds

∥∥∥∥+

+

k∑
i=1

‖T (t− ti)‖B(X)‖Ii(x(t−i ))− Ii(y(t−i ))‖+

+

t∫
0

‖T (t− s)‖B(X)‖f(s, y(s))− f(s, x(s))‖ds ≤

≤Mε(m+ λϕ)(ϕ(t) + ψ) +

t∫
0

MLf (s) ‖y(s)− x(s)‖ ds+

+

k∑
i=1

Mρi‖y(t−i )− x(t−i )‖.

Denote ρ = max{ρ1, ρ2, . . . , ρm}. By Lemma 2.3, we obtain

‖y(t)− x(t)‖ ≤Mε(m+ λϕ)(ϕ(t) + ψ)(1 +Mρ)k exp

M t∫
0

Lf (s)ds

 ≤
≤ cf,M,ϕε(ϕ(t) + ψ), t ∈ (tk, tk+1],

where

cf,M,ϕ := M(m+ λϕ) (1 +Mρ)
m

exp

M T∫
0

Lf (s)ds

 > 0. (4.1)

Thus, equation (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ). The proof
is complete.

One can proceed as in the proof of Theorem 4.2 to show the following results.

Corollary 4.3. Under assumptions (H1)–(H3) equation (1.1) is generalized
Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).
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Corollary 4.4. Under assumptions (H1) and (H2) equation (1.1) is Ulam-Hyers
stable.

4.2. ULAM-HYERS-RASSIAS STABILITY RESULTS ON J = R+

Now, we discuss the following impulsive equation (1.1) on the unbounded interval
J = R+. To achieve our aim, we suppose that the linear equation x′ = Ax is stable, i.e.,
we need a restriction ω < 0 in this section. Then we state the following assumptions:

(H4) f ∈ C(R+ ×X,X) and there exists a function Lf ∈ C(R+,R+) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖

for each t ∈ R+ and all u, v ∈ X. Moreover, we suppose

t∫
0

Lf (s)ds ≤ ωf t+ Ωf

for any t ≥ 0 and some ωf ≥ 0, Ωf ≥ 0 satisfying Nωf + ω < 0.
(H5) Ik: X → X and there exist constants ρk > 0 such that

‖Ik(u)− Ik(v)‖ ≤ ρk‖u− v‖, k ∈M

for each t ∈ R+ and all u, v ∈ X. Moreover, we assume

ρ := sup
k∈M

k∏
i=1

(1 +Nρi) <∞,

which means some stability for impulsive conditions when M = N.
(H6) There exists a constant λϕ > 0 and a function ϕ ∈ PC(R+,R+) such that

t∫
0

eω(t−s)+Nωf tϕ(s)ds ≤ λϕϕ(t) for each t ∈ R+.

(H7) Set

M1 := sup
k∈M

k∑
i=1

eω(tk−ti)+Nωf tk ,

while for M = N we suppose that M1 <∞.
Under the above assumptions, we arrive at the following result.

Theorem 4.5. Assume (H4)–(H7) are satisfied. Then equation (1.1) is Ulam-Hyers-
-Rassias stable with respect to (ϕ,ψ).



On the stability of first order impulsive evolution equations 649

Proof. Let y ∈ PC(R+, X)∩C(R+′ , D(A))∩C1(R+′ , X) be a solution of the inequality
(3.3). Let x be the unique mild solution of the impulsive Cauchy problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k ∈M,

x(0) = y(0).

Like in (3.4), by differential inequality (3.3), for each t ∈ (tk, tk+1], k ∈ M0 we
have ∥∥∥∥y(t)− T (t)y(0)−

t∫
0

T (t− s)f(s, y(s))ds−
k∑
i=1

T (t− ti)Ii(y(t−i ))

∥∥∥∥ ≤
≤

k∑
i=1

‖T (t− ti)‖B(X)‖gi‖+

t∫
0

‖T (t− s)‖B(X)‖g(s)‖ds ≤

≤ N

 k∑
i=1

eω(t−ti)εψ +

t∫
0

eω(t−s)εϕ(s)ds

 .

Hence for each t ∈ (tk, tk+1], it follows that

‖y(t)− x(t)‖ ≤ N

 k∑
i=1

eω(t−ti)εψ +

t∫
0

eω(t−s)εϕ(s)ds

+

+

t∫
0

Neω(t−s)Lf (s) ‖y(s)− x(s)‖ ds+

+

k∑
i=1

Nρie
ω(t−ti)‖y(t−i )− x(t−i )‖.

Set ȳ(t) := e−ωty(t) and x̄(t) := e−ωtx(t), then we derive

‖ȳ(t)− x̄(t)‖ ≤ Nε

 k∑
i=1

e−ωtiψ +

t∫
0

e−ωsϕ(s)ds

+

+

t∫
0

NLf (s) ‖ȳ(s)− x̄(s)‖ ds+

k∑
i=1

Nρi‖ȳ(t−i )− x̄(t−i )‖.

Since

a(t) := Nε

 k∑
i=1

e−ωtiψ +

t∫
0

e−ωsϕ(s)ds

 , t ∈ (tk, tk+1],
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is nondecreasing (note that ω < 0) and a ∈ PC(R+,R+), by Remark 2.4 (i), we
obtain

‖ȳ(t)− x̄(t)‖ ≤ Nρε

 k∑
i=1

e−ωtiψ +

t∫
0

e−ωsϕ(s)ds

 exp

(
N

t∫
0

Lf (s)ds

)
,

which gives

‖y(t)− x(t)‖ ≤ Nρε

 k∑
i=1

eω(t−ti)ψ +

t∫
0

eω(t−s)ϕ(s)ds

 exp

(
N

t∫
0

Lf (s)ds

)
≤

≤ Nρε

 k∑
i=1

eω(t−ti)+N(ωf t+Ωf )ψ +

t∫
0

eω(t−s)+N(ωf t+Ωf )ϕ(s)ds

 ≤
≤ NρεeNΩf (M1 + λϕ) (ϕ(t) + ψ) =

= cf,M,ϕε(ϕ(t) + ψ), t ≥ 0,

where
cf,M,ϕ := NρeNΩf (M1 + λϕ) > 0. (4.2)

Thus, equation (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ). The proof
is complete.

One can proceed as in the proof of Theorem 4.5 to show the following results.

Corollary 4.6. Under assumptions (H4)–(H7) the equation (1.1) is generalized
Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).

Corollary 4.7. Under assumptions (H4), (H5) and (H7) equation (1.1) is Ulam-
-Hyers stable.

5. EXAMPLES

In this section, we give two examples to illustrate our abstract results above. We
consider one-dimensional diffusion processes with sudden changes of states. These
examples can explain either the evolution of the temperature of the rod or the chemical
concentration of the substance. Of course, more general examples could be presented
but we think that our examples are suitable for demonstrating our theory.

Example 5.1. Consider a distribution of the temperature x(t, y) on the rod with a
sudden change of temperature at time t = 1

3 . The corresponding impulsive partial
differential equation is given by

∂
∂tx(t, y) = − ∂2

∂y2x(t, y), y ∈ (0, 1), t ∈ [0, 1
3 ) ∪ ( 1

3 , 1],
∂
∂yx(t, 0) = ∂

∂yx(t, 1) = 0, t ∈ [0, 1
3 ) ∪ ( 1

3 , 1],

∆x( 1
3 , y) = λx( 1

3

−
, y), λ ∈ R, y ∈ (0, 1).

(5.1)
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Hence J = [0, 1], m = 1 and t1 = 1
3 . Let X = L2(0, 1). Define Ax = − ∂2

∂y2x for
x ∈ D(A) with

D(A) =
{
x ∈ X :

∂x

∂y
,
∂2x

∂y2
∈ X, x(0) = x(1) = 0

}
.

Then, A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in X. Moreover,
‖T (t)‖B(X) ≤ 1 = M for all t ≥ 0.

Denote x(·)(y) = x(·, y), f(·, x)(y) = 0 and I1(x( 1
3

−
))(y) = λx( 1

3

−
, y), then the

problem (5.1) can be abstracted into{
x′(t) = Ax(t), t ∈ [0, 1

3 ) ∪ ( 1
3 , 1],

∆x( 1
3 ) = I1(x( 1

3

−
)) = λx( 1

3

−
).

(5.2)

Clearly, (H1) and (H2) hold. Set ϕ(t) = 3t2 and ψ = 1. Then (H3) holds if λϕ = 1
3 .

Thus, by Theorem 4.2, equation (5.1) is Ulam-Hyers-Rassias stable with respect to
(3t2, 1) on [0, 1] and cf,M,ϕ = 4

3 (1 + |λ|) (see (4.1)).

Example 5.2. Consider
∂
∂tx(t, y) = (∆y − 2I)x(t, y) + sin t, y ∈ Ω, t > 0, t 6= N,
∂
∂yx(t, y) = 0, y ∈ ∂Ω, t > 0, t 6= N,
∆x(i, y) = 1

i2x(i−, y), y ∈ Ω, i ∈ N,
(5.3)

where Ω ⊂ R2 is a bounded domain, ∆y is the Laplace operator in R2, and ∂Ω ∈ C2.
Note now J = R+, ti = i and M = N. Here we consider infinitely many impulses on
the infinite time interval R+.

Let X = L2(Ω), D(A) = H2(Ω)∩H1
0 (Ω). Define Ax = (∆y − 2I)x, x ∈ D(A). By

Theorem 2.5 of [21], A is just the infinitesimal generator of a contraction C0-semigroup
in L2(Ω), that is, ‖T (t)‖B(X) ≤ e−2t for t ≥ 0, so N = 1 and ω = −2 < 0.

Denote x(·)(y) = x(·, y), f(t, x)(y) = sin t and Ii(x(i−)) = 1
i2x(i−), then problem

(5.3) can be abstracted into{
x′(t) = Ax(t) + sin t, t ∈ [0,∞) \ N,
∆x(i) = Ii(x(i−)) = 1

i2x(i−).
(5.4)

Clearly, (H4) and (H5) hold with ωf = 0 and ρ =
∞∏
i=1

(1 + 1
i2 ) ≤ e

∞∑
i=1

1
i2 = e

π2

6 . Next,

Ωf = 0. Set ϕ(t) = et and ψ = 1. Then (H6) holds if λϕ = 1
3 . Moreover, (H7) is

satisfied with M1 = e2

e2−1 .
Thus, applying Theorem 4.5, equation (5.3) is Ulam-Hyers-Rassias stable with

respect to (et, 1) on R+ with cf,M,ϕ = e
π2

6

(
1
3 + e2

e2−1

)
(see (4.2)).
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6. EXTENSIONS FOR THE CASE WITH INFINITE IMPULSES

For the case M = N, it is natural to consider changing inequalities (3.2) and (3.3)
into the following ones:{

‖y′(t)−A(t)y − f(t, y(t))‖ ≤ ϕ(t), t ∈ J ′,
‖∆y(tk)− Ik(y(t−k ))‖ ≤ ψk, k ∈ N,

(6.1)

and {
‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ εϕ(t), t ∈ J ′,
‖∆y(tk)− Ik(y(t−k ))‖ ≤ εψk, k ∈ N

(6.2)

for ϕ(·) like above but ψ := {ψk}k∈N is now a nonconstant sequence of nonnegative
numbers ψk ≥ 0 for all k ∈ N. Then the inequalities of Definitions 3.3 and 3.4 are
replaced with

‖y(t)− x(t)‖ ≤ cf,M,ϕε(ϕ(t) + ψk+1), t ∈ (tk, tk+1], k ≥ 0,

and

‖y(t)− x(t)‖ ≤ cf,M,ϕε(ϕ(t) + ψk+1), t ∈ (tk, tk+1], k ≥ 0,

respectively. We call these as extended generalized Ulam-Hyers-Rassias stability and
extended Ulam-Hyers-Rassias stability, respectively. They provide more flexibility for
studying stability.

Then we state the following weaker assumptions:
(H8) f ∈ C(R+ ×X,X) and there exists a function Lf ∈ C(R+,R+) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖

for each t ∈ R+ and all u, v ∈ X.
(H9) Ik: X → X and there exist constants ρk > 0 such that

‖Ik(u)− Ik(v)‖ ≤ ρk‖u− v‖, k ∈ N

for each t ∈ R+ and all u, v ∈ X.
(H10) There exist constants λϕ > 0, λψ > 0 and a function ϕ ∈ PC(R+,R+) such

that
k∏
i=1

(1 +Nρi) max
t∈[tk,tk+1]

k∑
i=1

e
ω(t−ti)+N

t∫
0

Lf (s)ds
ψi ≤ λψψk+1 for each k ≥ 0, (6.3)

and

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
t∫

0

eω(t−s)ϕ(s)ds ≤ λϕϕ(t) for each t ∈ (tk, tk+1], k ≥ 0.

(6.4)
Under the above assumptions, we can repeat the proof of Theorem 4.5 to get the

following result.
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Theorem 6.1. Assume (H8)–(H10) are satisfied. Then equation (1.1) with J = R+

and M = N is extended Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).

Proof. Let y ∈ PC(R+, X) ∩ C(R+′ , D(A)) ∩ C1(R+′ , X) be a solution of inequality
(6.2), and let x be the unique mild solution of the impulsive Cauchy problem


x′(t) = Ax(t) + f(t, x(t)), t ∈ R′,
∆x(tk) = Ik(x(t−k )), k ∈ N,
x(0) = y(0).

Following the proof of Theorem 4.5, for t ∈ (tk, tk+1], we obtain

‖y(t)− x(t)‖ ≤

≤ Nε
k∏
i=1

(1 +Nρi)

 k∑
i=1

eω(t−ti)ψi +

t∫
0

eω(t−s)ϕ(s)ds

 exp

(
N

t∫
0

Lf (s)ds

)
≤

≤ Nε (λψψk+1 + λϕϕ(t)) =

= cf,M,ϕε(ϕ(t) + ψk+1),

where

cf,M,ϕ := N (λψ + λϕ) > 0. (6.5)

Thus, equation (1.1) is extended Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).
The proof is complete.

One can proceed as in the proof of Theorem 6.1 to show the following results.

Corollary 6.2. Under assumptions (H8)–(H10) equation (1.1) is extended generali-
zed Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).

Finally, we give some explaination of our assumptions (H4)–(H7) and (H8)–(H10).

Remark 6.3. Certainly (H4)–(H7) imply (H8)–(H10), but (H4)–(H7) are easier to
verify than (H8)–(H10). On the other hand, assuming (H8), (H9) and using (6.3),
(6.4), constants λψ, λϕ, sequence ψ and function ϕ can be constructed step by step
on (tk, tk+1], k ≥ 0 so that satisfy (H10).

A very rough construct is as follows: first we take λψ = λϕ = 1. Then starting
with some ψ1, the rest terms of sequence ψ are done inductively by (6.3). Now we
construct ϕ(t). To begin, we take any ϕ ∈ C([0, t1],R+). Then assume by induction
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that we already have ϕ ∈ C([0, tk],R+) satisfying (6.4). We look for ϕ(t) = eΩkt for
t ∈ (tk, tk+1] when Ωk ∈ R must be specified. For t ∈ (tk, tk+1], we compute

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
t∫

0

eω(t−s)ϕ(s)ds =

=

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
tk∫

0

eω(t−s)ϕ(s)ds+

+

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
t∫

tk

eω(t−s)ϕ(s)ds ≤

≤ Ak +Bk

t∫
tk

eω(t−s)ϕ(s)ds

for

Ak = max
t∈[tk,tk+1]

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
tk∫

0

eω(t−s)ϕ(s)ds,

Bk = max
t∈[tk,tk+1]

k∏
i=1

(1 +Nρi)e
N

t∫
0

Lf (s)ds
.

If Ωk > ω, then we have

Ak +Bk

t∫
tk

eω(t−s)ϕ(s)ds = Ak +Bk

t∫
tk

eω(t−s)+Ωksds ≤

≤ Ak +
Bk

Ωk − ω
eΩkt ≤ eΩkt

for any t ∈ (tk, tk+1], where we choose

Ωk := max

{
ω + 2Bk,

ln(2Ak)

tk

}
+ 1.

Indeed, then we have Ωk > ω, 1− Bk
Ωk−ω >

1
2 and so for any t ≥ tk, we derive

eΩkt

(
1− Bk

Ωk − ω

)
>

1

2
eΩktk > Ak,

which implies the desired

Ak +
Bk

Ωk − ω
eΩktds ≤ eΩkt, t ∈ (tk, tk+1].
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Summarizing, we see that (H10) is reasonable, but obtained formulas are very
awkward in general. For this reason we derive more simple and applicable results in
Section 4.
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