PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Triz SU-Field Models in the Process of Improving the Injector of an Internal Combustion Engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes a method for analyzing and solving problem situations with the use of Su-Field models and 76 inventive standards. These tools are part of the “Theory of Inventive Problem Solving”. The author has presented the basic concepts of Su-Field models, including in the compilation of the most commonly used substances their fields and types of interactions in Su-Field models. The inventive standards have also been presented and grouped. Attempts have been made to solve two undesirable situations that occur during the operation of a complex technical system, which is the fuel injector of the self-ignition engine. Problem situations related to insufficient impact were modelled - too low tightening of the injector spring, and negative (harmful) interaction - erosive wear of the holes in the atomizer nozzle. Using the inventive standards of Class-1 and Class-2, general solutions to these problems have been found. After the transformation, exemplary detailed ways of solving the aforementioned problems have been presented in order to improve the design of the injector for these models. A summary and comments on the applicability of the presented methodology, regarding such complex technical systems, have also been presented.
Rocznik
Strony
257--268
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
  • Maritime University of Szczecin, Poland
Bibliografia
  • 1. Altshuller, G., S. (1985). Algorithm of Inventive Problem Solving. [online] Available at: http://www.evolocus.com/textbooks/ariz85c.pdf [Accessed 25 Apr. 2018].
  • 2. Bejger, A. (2005). Alternative Research Method for the Marine Engine Injection System. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe akademii Morskiej w Szczecinie, 7(79), pp. 47–54.
  • 3. Boratyński, J. (2009). TRIZ Teoria Rozwiązywania Innowacyjnych Zadań – wprowadzenie. Kielce: ŚCITT Sp. z o.o., Oficyna Poligraficzna Apla, Promado s.c.
  • 4. Bryll, K. et al. (2017). The Effect of Degradation in Aqueous Media on Viscosity Average Molecular Weight of Single Polymer Polyester Composites. Revista de Chimie, 68(9), pp. 2034–2038.
  • 5. Chybowska, D., Chybowski, L. and Souchkov, V. (2018). Is Poland an innovative country? Management Systems in Production Engineering, 26(1), pp. 35-41, doi: 10.2478/mspe-2018-0006
  • 6. Chybowski, L. (2009a). Application of External Events Vectors for Defining Reliability Structure of Fishing Vessels Power, Propulsion and Technological Plants. Polish Journal of Environmental Studies, 18(2A), pp. 45-50.
  • 7. Chybowski, L. (2009b). Assessment of Reliability and Availability of Fishing Vessels Power, Propulsion and Technological Plants Based on Fault Tree Analysis. Polish Journal of Environmental Studies, 18(2A), pp. 39-44.
  • 8. Chybowski, L. (2011). A New Aproach To Reliability Importance Analysis of Complex Technical Systems. Journal of Polish CIMAC, 6(2), pp. 65-72.
  • 9. Chybowski, L. (2017a). The usage of the Miniature Dwarfs method in the improvement of passenger ship construction. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 51(123), pp. 28-34, doi: 10.17402/227.
  • 10. Chybowski, L. and Gawdzińska, K. (2016a). On the Present State-of-the-Art of a Component Importance Analysis for Complex Technical Systems. Advances in Intelligent Systems and Computing, 445, pp. 691-700, doi: 10.1007/978-3-319-31307-8_70.
  • 11. Chybowski, L. and Gawdzińska, K. (2016b). On the Possibilities of Applying the AHP Method to a Multicriteria Component Importance Analysis of Complex Technical Objects. Advances in Intelligent Systems and Computing, 445, pp. 701–710, doi: 10.1007/978-3-319-31307-8_71.
  • 12. Chybowski, L. and Gawdzińska, K. (2017c). Selected issues regarding achievements in component importance analysis for complex technical systems. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 52(124), pp. 137-144, doi 10.17402/255.
  • 13. Chybowski, L., Gawdzińska, K. and Przetakiewicz, W. (2017b). AHP based multi-criteria function analysis as a TRIZ tool for complex technical systems. Kraków: 13th MATRIZ TRIZfest 2017 International Conference, pp. 31-45. Available at: http://trizevent.com/TRIZfestProceedings2017.htm [Accessed 30 Apr. 2018].
  • 14. Chybowski, L., Grządziel, Z. and Gawdzińska, K. (2018). Simulation and Experimental Studies of a Multi-Tubular Floating Sea Wave Damper. Energies, 11(4), 1012, doi: 10.3390/en11041012.
  • 15. Dziczkowski, L. and Zolkiewski, S. (2014). Determination of the penetration depth of eddy currents in defectoscopic tests. Smart Diagnostics V, 588, pp. 64–73, doi: 10.4028/www.scientific.net/KEM.588.64.
  • 16. Gajewski, A. (2013). TRIZ – inwentyczna metoda rozwiązywania problemów. Zeszyty Naukowe Towaroznawstwo, Uniwersytet Ekonomiczny w Krakowie, 924, pp. 7-19. [online] Available at: https://uek.krakow.pl/files/common/uczelnia/wydawnictwo/2013/ZN_UEK_924_net.pdf [Accessed: 30 Apr. 2018].
  • 17. Gawdzińska, K. et al. (2016a). Determination of technological parameters of saturated composites based on sic by means of a model liquid. Metalurgija, 55(4), pp. 659-662.
  • 18. Gawdzińska, K., Bryll, K. and Nagolska, D. (2016b). Influence of heat treatment on abrasive wear resistance of silumin matrix composite castings. Archives of Metallurgy and Materials, 61(1), pp. 177–181.
  • 19. Gawdzińska, K., Grabian, J. and Przetakiewicz, W. (2008). Use of X-ray radiography in finding defects in metal-matrix composite casts. Metalurgija, 47(3), pp. 199–201.
  • 20. Invention Machine Corporation (1988). Invention Machine Software, version 3.0.
  • 21. Klyus, O. (2006). Thermal-Chemical Treatment of Fuel in Fuel Injection Systems of Diesel Engines. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe akademii Morskiej w Szczecinie, 10(82), pp. 259–265.
  • 22. Klyus, O. (2009). Analiza zastosowania katalizatorów w aparaturze paliwowej silników z zapłonem samoczynnym. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe akademii Morskiej w Szczecinie, 18(90), pp. 54–58.
  • 23. Livotov, P. and Petrov, V. (2013). TRIZ Innovation and Inventive Problem Solving Handbook. Berlin: TriS Europe - Innovation Knowledge Company.
  • 24. Marine study (2017). Fuel injector of diesel engines. [online] Available at: http://marinestudy.net/fuelinjector-of-diesel-engines/ [Accessed 14 Jun 2017].
  • 25. Mayer, O. (2017). Flexible lighting distribution on “party ships”. Scientific Journals of the Maritime niversity of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 49(121), pp. 9-16, doi: 10.17402/195.
  • 26. Piesowicz, E. et al. (2016). Poly(butylene terephthalate/carbon nanotubes nanocomposites Part II. Structure and properties. Polimery, 61(1), pp. 24–30, doi: 10.14314/polimery.2016.024.
  • 27. Ranachowski, Z. et al. (2013). Durability and wear of engine parts – new methods of testing of alloys and composites. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 35(107), pp. 125–131.
  • 28. Raunmiagi, Z. (2008). Verification of diesel engine injection valves prior to fuel injector repair. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 14(86), pp. 38–42.
  • 29. Russo, D. and Duci, S. (2015). From Altshuller's 76 Standard Solutions to a New Set of 111 Standards. Procedia Engineering, 131, pp. 747-756, doi: 10.1016/j.proeng.2015.12.369.
  • 30. Souchkov, V., (2016). TRIZ & Systematic Innovation. TRIZ and xTRIZ Techniques For Technology and Engineering Applications. Training Course Techniques: Advanced Part. Enschede: ICG Training & Consulting.
  • 31. Verein Deuche Ingenieure (2015). Inventive problem solving with TRIZ. Fundamentals and definitions. Standard VDI 4521, part 1.
  • 32. Walkowski, M. and Smolarz, J. (2009). The model of steady fuel flow in the injector channels in the Common Rail systems. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 17(89), pp. 80–86.
  • 33. Wiśnicki, B., Chybowski, L. and Czarnecki, M. (2017). Analysis of the efficiency of port container terminals with the use of the Data Envelopment Analysis method of relative productivity evaluation. Management Systems in Production Engineering, 1(25), pp. 9-15, doi: 10.1515/mspe-2017-0001.
  • 34. Wu, C-T. (2011). Identifying an Innovative Su-Field Modeling Design Processes. International Journal of Mathematical Models and Methods in Applied Sciences, 3(5), pp. 704-712. [online] Available at: http://www.naun.org/main/NAUN/ijmmas/20-428.pdf [Accessed: 25 Apr. 2018].
  • 35. Zolkiewski, S. (2016). Machining interface and adapter for industrial robots. New Advances in Information Systems and Technologies, Vol 2, 445, pp. 739–748, doi: 10.1007/978-3-319-31307-8_75.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83c964a0-b20c-4c89-b708-2b253402b36a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.