PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reinforcement of underground excavation with expansion shell rock bolt equipped with deformable component

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread) and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod). There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.
Wydawca
Rocznik
Strony
39--52
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] BILIŃSKI J., KATULSKI A., KONDRACKI R, RZEPECKI W., Zachowanie się obudowy kotwiowej w aspekcie drgań górotworu pochodzących od robót strzałowych, Zeszyty Naukowe AGH – Górnictwo, 1987, 129, 12–20.
  • [2] BURTAN Z., ZORYCHTA A., CIEŚLIK J., CHLEBOWSKI D., Influence of mining operating conditions on fault bahavior, Archives of Mining Science, 2014, 59(3), 691–704.
  • [3] CAI M., Principles of rock support in burs-prone ground, Tunnelling and Underground Space Technology, 2013, 36, 46–56.
  • [4] CAMPOLI A., OLDSEN J., WU R., Yielding bolt support for burst prone working, Proceedings of Seventh International Symposium: Rockbolting and Rock Mechanics in Mining, Aachen, 2012, 205–212.
  • [5] CHARETTE F., PLOUFFE M., A new rock bolt concept for underground excavations under high stress conditions, Proceedings of 6th International Symposium on Ground Support in Mining and Civil Engineering Construction, Johannesburg, 2008, 225–240.
  • [6] CHEN Y., LI C.C., Performance of fully encapsulated rebar bolts and D-Bolts under combined pull-and-shear loading, Tunnelling and Underground Space Technology, 2015, 45, 99–106.
  • [7] CORIGLIANO M., SCANDELLA L., BARLA G., LAI C.G., PAOLUCCI R., Seismic analysis of deep tunnels in weak rock: A case study in southern Italy, Bulletin of Earthquake Engineering, 2011, 9(4), 975–995.
  • [8] DĘBKOWSKI R., RZEPECKI W., TURBAK A., Wybrane aspekty współpracy nośnych podkładek kotwowych ze stropem, [in] D. Flisiak (ed.), Geotechnics and civil engineering 2004: XXVII Winter School of Strata Mechanics, Zakopane, 14–19 March 2004, Wydawnictwo KGBiG AGH, 2004, 1053–1056.
  • [9] HE M., GONG W., WANG J., QI P., TAO Z, DU S, PENG Y., Development of novel energy-absorbing bolt with extraordinarily large elongation and constant resistance, International Journal of Rock Mechanics and Mining Science, 2014. 67, 29–42.
  • [10] http://www.arnall.com.pl
  • [11] http://www.garfordcablebolts.net.au
  • [12] http://www.interram.pl
  • [13] http://www.malmfalten.se
  • [14] JĘDRZEJEWSKI A., PLANETA S., SIEWIERSKI S., Wpływ rodzaju mieszanek gumowych na nośność kotwi, Przegląd Górniczy, 1975, 10, 409–414.
  • [15] KAISER P.K., CAI M., Design of rock support system under rockburst condition, Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3), 215–227.
  • [16] KANG H., WU Y., GAO F., LIN J., JIANG P., Fracture characteristics in rock bolts in underground coal mine roadways, International Journal of Rock Mechanics and Mining Science, 2013, 62, 105–112.
  • [17] KORZENIOWSKI W., Ocena stanu podziemnych wyrobisk chodnikowych i komorowych na podstawie empirycznych metod badawczych, Rozprawy – Monografie, nr 156. Uczelnianie Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków, 2006.
  • [18] KORZENIOWSKI W., SKRZYPKOWSKI K., HEREZY Ł., Laboratory method for evaluating the characteristics of expansion rock bolts subjected to axial tension, Archives of Mining Science, 2015, 60(1), 209–224.
  • [19] KORZENIOWSKI W., SKRZYPKOWSKI K., Metody badania górotworu kotwami przy obciążeniach dynamicznych, Przegląd Górniczy, 2011, 3–4, 1–8.
  • [20] LANZANO G., BILOTTA E., RUSSO G., Tunnels under seismic loading: a review of damage case histories and protection methods, [in:] G. Fabbrocino, F.S. Magistris (eds.), Strategies for reduction of the seismic risk, Publisher StreGa 2008, 65–75.
  • [21] LI C.C., A new energy – absorbing bolt for rock support in high stress rock masses, International Journal of Rock Mechanics and Mining Science, 2010, 47(3), 396–404.
  • [22] LI C.C., DOUCET C., Performance of D-bolts under dynamic loading, Rock Mechanics and Rock Engineering, 2012, 45(2), 193–204.
  • [23] LU Y., WANG L., ZHANG B., An experimental study of a deformable support for roadways constructed in deep broken soft rock under high stress, Mining Science and Technology, 2011, 21(6), 839–844.
  • [24] MAJCHERCZYK T., NIEDBALSKI Z., MAŁKOWSKI P., BEDNAREK Ł., Analysis of deformable steel arch support with rock bolts in mine roadways stability aspect, Archives of Mining Science, 2014, 59(3), 641–654.
  • [25] MALMGREN L., NORDLUND E., Interaction of shotcrete with rock and rock bolt – A numerical study, International Journal of Rock Mechanics and Mining Science, 2008, 45(4), 538–553.
  • [26] MAZAIRA A., KONICEK P., Intense rockburst impacts in deep underground construction and their prevention, Canadian Geotechnical Journal, 2015, 52(10), 1426–1439.
  • [27] MILLER A.L., Analysis and redesign of mine bearing plates, Journal of Applied Science and Engineering Technology, 2007, 1, 27–32.
  • [28] NIEROBISZ A., Deformable Bolts Research Results, Sobczyk and Kicki (eds.), Taylor and Francis Group, International Mining Forum, 2007.
  • [29] NIEROBISZ A., The model of dynamic loading of rockbolts, Archives of Mining Science, 2006, 51(3), 453–470.
  • [30] OLER R., DSI New Developments in Yieldable Rock Bolts. Dynamic Ground Support Applications Symposium, Sudbury, 2012.
  • [31] ORTLEPP W.D., BORNMAN J.J., ERASMUS N., The Durabar – a yieldable support tendom – design rationale and laboratory results, Rockbursts and Seismicity in Mines – RaSiM5, South African Institute of Mining and Metallurgy, 2001.
  • [32] PN-EN 10002-1, Metale. Próba rozciągania. Część 1: Metoda badania w temperaturze otoczenia, 2004.
  • [33] RZEPECKI W., BILIŃSKI J., Niektóre zagadnienia związane z konstrukcją kotwi przystosowanych do pracy w warunkach drgań górotworu, I Konferencja Naukowo-Techniczna „Obudowa kotwiowa jako skuteczny sposób zabezpieczania wyrobisk w kopalniach rud miedzi”, Lubiatów. Centrum Badawczo-Projektowe Miedzi „Cuprum” Sp. z o.o., Wrocław, 1997.
  • [34] SIEWIERSKI S., Wpływ obciążenia udarowego na pracę kotwi, Przegląd Górniczy, 1980, 2, 79–86.
  • [35] SKRZYPKOWSKI K., Roof bolting in terms of dynamic hazards, Gospodarka Surowcami Minerlanymi, 2008, 24(3/3), 305–316.
  • [36] SKRZYPKOWSKI K., ZAGÓRSKI K., DUDEK P., Zastosowanie drukarki 3D do produkcji prototypowej podkładki kotwowej, Przegląd Górniczy, 2016, 3, 52–56.
  • [37] ST-PIERRE L., HANASSI F.P., RADZISZEWSKI P.H., OULLET J., Development of a dynamic model for a cone bolt, International Journal of Rock Mechanics and Mining Science, 2009, 46(1), 107–114.
  • [38] TAJDUŚ A., CAŁA M., TAJDUŚ K., Geomechanika w budownictwie podziemnym: projektowanie i budowa tuneli, Wydawnictwa AGH, Kraków 2012.
  • [39] WANG G., WU X., JIAN Y., HUANG N., WANG S., Quasistatic laboratory testing of a new bolt for energy-absorbing applications, Tunneling and Underground Space Technology, 2013, 38, 122–128.
  • [40] WANG J., ZENG X., ZHOU J., Practices on rockburst prevention and control in headrace tunnels of Jinping II hydropower station, Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3), 258–268.
  • [41] WILLIS D., ROBY J., ASKILSRUD O.G., Extreme machine modifications in different ground at the world’s second deepest civil works tunnel, Proceedings in North American Tunneling, edited by M. Fowler, R. Palermo R., R. Pintabona and Smithson M. (eds.), Published by the Society of Mining, Metallurgy and Exploration, Inc., 2012, 153–162.
  • [42] WU Y.K., OLDSEN J., Development of a New Deformable Rock Bolt – Yield-Lok Bolt, 44th U.S. Rock Mechanics Symposium and 5th U.S. – Canada Rock Mechanics Symposium, Salt Lake City, Utah, American Rock Mechanics Association, 2010.
  • [43] XU N.W., LI T.B., DAI F., ZHANG R., TANG C.A., TANG L.X., Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China, Rock Mechanics and Rock Engineering, 2016, 49(3), 981–1000.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83c7472a-5a99-4576-b65b-417482c963b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.