Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Understanding the influence of iron impurity on the formation of the structure and the properties of hypereutectic aluminum-silicon alloys are important for achieving the required quality of castings, especially those obtained from secondary materials. In the present work, the influence of different iron contents (0.3, 1.1, and 2.0 wt.%) on the crystallization process, microstructure and mechanical properties of the Al-15% Si alloy was studied. It is shown that the presence of iron impurity in the Al-15% Si alloy leads to increasing the eutectic crystallization time from 6.2 to 7.6 s at increasing the iron content from 0.3 wt.% to 1.1 wt.%, changing the structure of the alloy eutectic in the solid state. The primary silicon and β-Al5SiFe phase coexist in the structure of the Al-15% Si alloys at a temperature below 575°C in the range of iron concentrations from 0 to 2 wt.% in equilibrium conditions. In the experimental alloys structure, the primary crystals of the β-phase were metallographically detected only in the alloys containing 1.1 and 2 wt.% of iron impurity. Increase of the iron content up to 2 wt.% significantly reduces the mechanical properties of the Al-15% Si alloy due to the formation of large platelet-like inclusions of β-Al5SiFe phase.
Czasopismo
Rocznik
Tom
Strony
101--107
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Wuhan Textile University, China
- National University of Science and Technology «MISIS», Russia
autor
- Vladimir State University named after Alexander and Nikolay Stoletovs, Russia
autor
- Siberian State Industrial University, Russia
autor
- Pacific National University, Russia
autor
- Siberian State Industrial University, Russia
autor
- Siberian Federal University, Russia
Bibliografia
- [1] Zhao, Y., Du, W., Koe, B., Connolley, T., Irvine, S., Allan, P. K., Schleputz, C. M., Zhang, W., Wang, F. & Eskin, D. G. (2018). 3D Characterisation of the Fe-Rich Intermetallic Phases in Recycled Al Alloys by Synchrotron X-Ray Microtomography and Skeletonisation. Scripta Materialia. 146, 321-326.
- [2] Lu, H., Hou, Z., Ma, M. & Lu, G. (2017). Effect of Fe-Content on the Mechanical Properties of Recycled Al Alloys during Hot Compression. Metals. 7, 262
- [3] Zhang, L., Gao, J., Damoah, L.N.W. & Robertson, D.G. (2012). Removal of Iron from Aluminum: a Review. Mineral Processing and Extractive Metallurgy Review. 33, 99-157.
- [4] Deev, V.B., Selyanin, I.F., Kutsenko, A.I., Belov, N.A. & Ponomareva, K.V. (2015). Promising Resource Saving Technology for Processing Melts During Production of Cast Aluminum Alloys. Metallurgist. 58 (11-12), 1123-1127.
- [5] Sweet, L., Zhu, S. M., Gao, S. X., Taylor, J. A. & Easton, M. A. (2011). The Effect of Iron Content on the Iron-Containing Intermetallic Phases in A Cast 6060 Aluminum Alloy. Metallurgical and Materials Transactions A. 42, 1737-1749.
- [6] Tenekedjiev, N & Gruzleski, J.E. (1990). Hypereutectic Aluminium-Silicon Casting Alloys – A Review. Cast Metals. 3(2), 96-105.
- [7] Abouei, V., Shabestari, S.G. & Saghafian, H. (2010). Dry Sliding Wear Behaviour of Hypereutectic Al-Si Piston Alloys Containing Iron-Rich Intermetallics. Materials Characterization. 61, 1089-1096.
- [8] Darvishi, A., Maleki, A., Atabaki, M.M. & Zargami, M. (2010). The Mutual Effect of Iron and Manganese on Microstructure and Mechanical Properties of Aluminium-Silicon Alloy. Metalurgija-Journal of Metallurgy. 16(1), 11-24.
- [9] Šćepanović, J., Asanović, V., Radonjić, D., Vukšanović, D., Herenda, S., Korać, F. & Bikić, F. (2019). Mechanical properties and corrosion behaviour of Al–Si alloys for IC engine. Journal of the Serbian Chemical Society. 84(5), 503-516.
- [10] Otani, L.B., Soyama, J., Zepon, G., Silva, A.C., Kiminami, C.S., Botta, W.J. & Bolfarini, C. (2017). Predicting the Formation of Intermetallic Phases in the Al-Si-Fe System with Mn Additions. Journal of Phase Equilibria and Diffusion. 38, 298-304.
- [11] Dinnis, C.M., Taylor, J.A. & Dahle, A.K. (2005). As-Cast Morphology of Iron-Intermetallics in Al-Si Foundry Alloys. Scripta Materialia. 53, 955-958.
- [12] Mikołajczak, P. & Ratke, L. (2015). Three Dimensional Morphology of β-Al5FeSi Intermetallics in AlSi Alloys. Archives of Foundry Engineering. 15(1), 47-50.
- [13] Hatch, J.E. (1984). Aluminum: Properties and Physical Metallurgy. (2nd ed.). Metals Park (OH): American Society for Metals.
- [14] Mahta, M., Emamy, M., Cao, X. & Campbell, J. (2008). Overview of β-Al5FeSi phase in Al-Si alloys. In: L. V. Olivante (Ed.), Materials Science Research Trends. 251-271. Nova Science Publishers: New York.
- [15] Lu, S., Wu, S., Lin, C. & An, P. (2014). Microstructure and Properties of In Situ Si and Fe-rich Particles Reinforced Al Matrix Composites Assisted with Ultrasonic Vibration. Acta Metallurgica Sinica (English Letters). 27, 862-868.
- [16] Wladysiak, R., Kozun, A. & Pacyniak, T. (2016). Effect of Casting Die Cooling On Solidification Process and Microstructure of Hypereutectic Al-Si Alloy. Archives of Foundry Engineering. 16(4), 175-180.
- [17] Murali, S., Raman K. S. & Murthy, K. S. S. (1992). Effect of Magnesium, Iron (Impurity) and Solidification Rates on the Fracture Toughness of Al-7Si-0.3Mg Casting Alloy. Materials Science and Engineering: A. 151, 1-10.
- [18] Hren, I., Svobodova, J. & Michna, Š. (2018). Influence of Al5FeSi Phases on the Cracking of Castings at Al-Si Alloys. Archives of Foundry Engineering. 18(4), 120-124.
- [19] Taghaddos, E., Hejazi, M. M., Taghiabadi, R. & Shabestari, S. G. (2009). Effect of Iron-Intermetallics on the Fluidity of 413 Aluminum Alloy. Journal of Alloys and Compounds. 468, 539-545.
- [20] Jorstad, J. & Apelian, D. (2009). Hypereutectic Al-Si Alloys: Practical Casting Considerations. International Journal of Metalcasting. 3, 13-36.
- [21] Prusov, E. S., Panfilov A. A. & Kechin V. A. (2017). Role of Powder Precursors in Production of Composite Alloys Using Liquid-Phase Methods. Russian Journal of Non-Ferrous Metals. 58, 308-316.
- [22] Khalifa, W., El-Hadad, S. & Tsunekawa, Y. (2013). Microstructure and Wear Behavior of Solidification Sonoprocessed B390 Hypereutectic Al-Si Alloy. Metallurgical and Materials Transactions A. 44, 5817-5824.
- [23] Wang, Q., Zhang, S., Zhang, Z., Yan, X. & Geng, H. (2013). Study of Melt Thermal-Rate Treatment and Low-Temperature Pouring on Al-15%Si Alloy. JOM. 65, 958-966.
- [24] Wieszala, R. & Piatkowski, J. (2017). Selected Tribological Properties of A390.0 Alloy. Archives of Foundry Engineering. 17(4), 175-178.
- [25] Bidmeshki, C., Abouei, V., Saghafian, H., Shabestari, S.G. & Noghani, M.T. (2016). Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. Journal of Materials Research and Technology. 5(3) 250-258.
- [26] Lin, C., Wu, S., Lü, S., Wu, H. & Chen, H. (2019). Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al-Si alloy with rheo-squeeze casting. Transactions of Nonferrous Metals Society of China. 29(2), 253-262.
- [27] Ivanov, Y.F., Alsaraeva, K.V., Gromov, V.E., Popova, N.A. & Konovalov, S.V. (2015). Fatigue life of silumin treated with a high-intensity pulsed electron beam. Journal of Surface Investigation. 9, 1056-1059.
- [28] Belov, N. A., Aksenov, A. A. & Eskin, D. G. (2002). Iron in Aluminum Alloys: Impurity and Alloying Element. London: Taylor&Francis.
- [29] Liu, Z.K & Chang, Y.A. (1999). Thermodynamic Assessment of the Al-Fe-Si System. Metallurgical and Materials Transactions A. 30A, 1081-1095.
- [30] Mrówka-Nowotnik, G., Sieniawski, J. & Wierzbińska, M. (2007). Intermetallic phase particles in 6082 aluminium alloy. Archives of Materials Science and Engineering. 28(2), 69-76.
- [31] Mondolfo, L.F. (1976). Aluminium Alloys: Structure and Properties. London: Butterworth.
- [32] Mbuya, T.O., Odera, B.O. & Ng'ang'a S.P. (2003). Influence of iron on castability and properties of aluminium silicon alloys: literature review. International Journal of Cast Metals Research. 16(5), 451-465.
- [33] Suarez, M.A., Figueroa, I., Cruz, A., Hernandez, A. & Chavez J. F. (2012). Study of the Al-Si-X System by Different Cooling Rates and Heat Treatment. Materials Research. 15, 763-769.
- [34] Taylor J. A. (2012). Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Materials Science. 1, 19-33.
- [35] Taylor J.A. (1997) The Role of Iron in the Formation of Porosity in Al-Si-Cu Alloy Castings, PhD Thesis. Brisbane: University of Queensland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83c6373f-8e84-4317-85c4-7737c01d936c