PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation research on the electromagnetic properties of the ELC resonator in the microwave range

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns modeling and simulation of the interaction of electromagnetic radiation with the metamaterial ELC resonator in the microwave range of 5 GHz to 10 GHz. The simulation was performed using the CST Studio software in the Student version. The result of the simulation is the frequency characteristics of the coefficients of absorption (A), transmission (T) and reflection (R) of the ELC resonator, as well as the values of the real and imaginary parts of electric and magnetic permeability coefficients of that structure. The results obtained suggest that the examined metamaterial structure of the ELC shows strong absorption properties of resonant nature.
Rocznik
Tom
Strony
14--20
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
  • Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland, Faculty of Electrical Engineering, Department of Marine Electronics
  • Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland, Faculty of Electrical Engineering, Department of Marine Electronics
Bibliografia
  • 1. Chakraborty, A., 2013, Recent Developments and Analysis of Electromagnetic Metamaterial with All of Its Application in Terahertz Range, IOSR J. Electron. Commun. Eng., vol. 6, pp. 86–93.
  • 2. Djordjevic, A.R., Biljié, R.M., Likar-Smiljanic, V.D., Sarkar, T.K., 2001, Wideband Frequency-Domain Characterization of FR-4 and Time-Domain Causality, IEEE Transactions on Electromagnetic Compatibility, vol. 43(4), pp. 662-667.
  • 3. Panwar, R., Lee, J.R., 2017, Progress in Frequency Selective Surface-Based Smart Electromagnetic Structures: A Critical Review, Aerospace Science and Technology, vol. 66, pp. 216–234.
  • 4. Panwar, R., Puthucheri, S., Agarwala, V., Singh, D., 2015, Fractal Frequency-Selective Surface Embedded Thin Broadband Microwave Absorber Coatings Using Heterogeneous Composites, IEEE Transactions on Microwave Theory and Techniques, vol. 63(8), pp. 2438-2448.
  • 5. Rothwell, E.J., Frasch, J.L., Ellison, S.M., Chahal, P., Ouedraogo, R.O., 2016, Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials, Progress In Electromagnetics Research, vol. 157, pp. 31–47.
  • 6. Singh, G., Marwaha, A., 2015, A Review of Metamaterials and Its Applications, Int. J. Eng. Trends Technol., vol. 14, pp. 305–310.
  • 7. Watts, C.M., Liu, X., Padilla, W.J., 2012, Metamaterial Electromagnetic Wave Absorbers, Advanced Materials, vol. 24(23), pp. 98–120.
  • 8. Zhu, W., 2018, Electromagnetic Metamaterial Absorbers: From Narrowband to Broadband, In Metamaterials and Metasurfaces. IntechOpen.
  • 9. www.cst.com.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83c5cf72-9de9-4a6d-989a-a438dc0d0353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.