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ABSTRACT: A new method for computation of positive realizations of given transfer matrices of descriptor
linear discrete-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive
realizations of transfer matrices are given. A procedure for computation of the positive realizations for
descriptor discrete-time linear systems is proposed and illustrated by examples.

1 INTRODUCTION

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains
forever in the positive orthant for all nonnegative
inputs. An overview of state of the art in positive
systems theory is given in the monographs [2, 14].
Variety of models having positive behavior can be
found in engineering, economics, social sciences,
biology and medicine, etc. [2, 14].

The determination of the matrices A, B, C, D of the
state equations of linear systems for given their
transfer matrices is called the realization problem. The
realization problem is a classical problem of analysis
of linear systems and has been considered in many
books and papers [4-6, 12, 13, 23, 25]. A tutorial on the
positive realization problem has been given in the
paper [1] and in the books [2, 14]. The positive
minimal realization problem for linear systems
without and with delays has been analyzed in [3, 7, 9,
10, 14-18, 21, 22, 24]. The existence and determination
of the set of Metzler matrices for given stable
polynomials have been considered in [11]. The
realization problem for positive 2D hybrid systems
has been addressed in [20]. For fractional linear

systems the realization problem has been considered
in [4, 19, 23, 25]. A method for computation of
positive realizations of descriptor continuous-time
linear systems has been proposed in [8].

In this paper a new method for determination of
positive realizations of descriptor linear discrete-time
systems is proposed.

The paper is organized as follows. In section 2
some definitions and theorems concerning the
positive discrete-time linear systems are recalled. A
new method for computation of positive realizations
for single-input single-output linear systems is
proposed in section 3 and for multi-input multi-
output systems in section 4. Concluding remarks are
given in section 5.

The following notation will be used: R - the set
of real numbers, R - the set of nxXm real
matrices, R7” - the set of mxm real matrices

. . . n nx1
with nonnegative entries and R} =R"T", Z, - the
set of nonnegative integers, [, - the nxn identity

matrix.
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2 PRELIMINARIES

Consider the discrete-time linear system

Xy = Ax, + Bu,, (2.1a)

v; =Cx; +Du,, (2.1b)

where x, €R", u, eR”, y, €R” are the state,

input and output vectors and 4 € R, BeR"",
CeR”™, DeR™.

Definition 2.1. [2, 14] The system (2.1) is called
(internally) positive if x, € R and Vi € R,
ieZ, for any initial conditions x, € R, and all
inputs u, eR’, ieZ,

Theorem 2.1. [2, 14] The system (2.1) is positive if
and only if

AeRT”" BeRT" CeRY”" DeR™ 2.2)

The transfer matrix of the system (2.1) is given by

T(z)=C[l,z—A]'B+D. (2.3)
The transfer matrix is called proper if
lim7'(z)=D e R"™ (2.4)

Z—>®0

and it is called strictly properif D=0.

Definition 2.2. [1, 25] The matrices (2.2) are called
a positive realization of 7(z) if they satisfy the
equality (2.3).

Definition 2.3. [1, 25] The matrices (2.2) are called
asymptotically stable realization of (2.3) if the matrix
AeRT" is an asymptotically stable matrix (Schur
matrix).

Theorem 2.2. [1, 25] The positive realization (2.2) is
asymptotically stable if and only if all coefficients of
the polynomial

p,(2)=det[l (z+1)-A]=z"+a, 2" +..+az+a, (2.5)

are positive, i.e. @, >0 for i=0,L...,n-1.

The positive realization problem for the standard
system can be stated as follows. Given a proper
transfer matrix 7(z) find its positive realization
(2.2).

Theorem 2.3. [25] If (2.2) is a positive realization of
(2.3) then the matrices
A=PAP"', B=PB, C=CP"', D=D (26
are also a positive realization of (2.3) if and only if the
matrix P €R7”" is a monomial matrix (in each row

and in each column only one entry is positive and the
remaining entries are zero).
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Proofl. Proof follows immediately from the fact
that P~ €RY" if and only if P is a monomial
matrix. O

Theorem 2.4. The polynomial p, (z) with zeros
z,, Rez, >0, k=1,..,n has the form

p,(2)=z"-a, 2" +a, 2" —a, 2" +..+(=1)"a,(2.7)
and its real coefficients a, satisfy the condition

a,>0 for k=0,1,...,n—-1. (2.8)

Proof. Proof will be accomplished by induction.
The hypothesis is true for n=1 and n=2 since

p(z)=z—a, a;>0

and
(D) =(-2)z-2)=(-a+jf)z-a-jf=z"-2az+a’ +

Assuming that the hypothesis is true for k we shall
show that it is also valid for k+1:

Pen(@)=p(2)z-a)=
(" -a 2" +a 27 -+ (=D'a)z-a)

=" ~(a,_ +@)" +(a,, +a) -+ (=) g

Therefore, the hypothesis is true for any k. The
proof for a pair of complex conjugate zeros is similar.
a]

3 COMPUTATION OF POSITIVE REALIZATIONS
OF DESCRIPTOR SINGLE-INPUT SINGLE-
OUTPUT SYSTEMS

Consider the descriptor descriptor-time linear system

Ex,,, = Ax, + Bu,, (3.1a)

y, =Cx,, (3.1b)

where x, €R", u,eR", y, €R” are the state,
input and output vectors and E,4eR""

BEERnxm, CESRpxn/ DEERpxm-

It is assumed that detE =0 and the pencil of
(E, A) isregular, i.e.

det[Ez— A]#0 forsome z € C (the field of

complex numbers). (3.2)

Definition 3.1. The descriptor system (3.1) is
called (internally) positive if x, €R}, y, eR?,
ieZ, for any consistent initial conditions x, € ﬁz
and all inputs u, e R}, i=0,l....q.

The transfer matrix of the system (3.1)



T(z)=C[Ez—A]"'B e R""(2) (3.3)

can be decomposed in the polynomial part P(z)
and strictly proper part T, (z), i.e.

T(z)=P(2)+T,(2), (3.4a)
where

P(z)=F +BRz+..+ Pz" e R""[z] (3.4b)
and

T,(2)=C[l,z—A]"'B.. (3.4¢)

First the new method for computation of a positive
realization of given transfer function will be
presented.

Theorem 3.1. There exists the positive realization

z, 0
X %
z
_ 2 _ b,
A = 7 B = . 7
0 0 0 -« =z, 0 é
i 0 0 0 1z | !
C=[0 - 0 1] (3.5)
of the transfer function
— n—1 — —
m_z +..+mz+m
7’;17 (S) — - n—1 — 1 0 (36)
z"+d, z" +..+dz+d,
if and only if
b, 1 z zz, 2,202, - m,
7o b'2 _ 0 1 z -"—zz -z +2z, +'~~~+an1 rﬁl . ‘Ri’(?’j)
bl 10 0 0o 1 i
where z, , k=1..,n are the zeros of the
denominator

d(z)=z"+d, 2" +..+dz+d,=(z+2)(z+2,).(2+2,) (3.8)

which are nonnegative, i.e. z, 20, k=1,...,n.
Proof. The proof is given in [6].

The realization is asymptotically stable if and only
if 0<z, <1 for k=1,...,n.

Remark 3.1. The positive realization (3.5) is
asymptotically stable if and only if all coefficients of
the polynomial

d(z+1)=

01 1 0 0] -
n -1 w5 nd - = 7oA , C=[0.81 1.7 1]
G+ +d, (z+D)"" +..+d(z+)+d,=2"+d, 2" +..+dz+d,A=| 0 02 1} B=0
1

are positive, i.e. c?k>0, k=0,1,..,n-1 [6].

Theorem 3.1 and Remark 3.1 can be easily
extended to the multi-input multi-output linear
systems [6].

Theorem 3.2. There always exists the positive
asymptotically stable realization (3.5) of the transfer
function

n_/lo
2"+d 2" +.+dz+d,

T, ()= 39)

if and only if m, >0 and the zeros of (3.8) satisfy
the condition 0=z, <1, k=1,..,n.

Proof. From (3.7) it follows that if m, =0 for
k=1,..,n then by=m,, b,=0, k=2,.,n and
B=[m, 0 0]" eR” The  positive
realization is asymptotically stable if and only if
0<z <1 for k=1,..,n.0

Remark 3.2. The Theorems 3.1 and 3.2 are also
valid if the matrix A4 has multiple eigenvalues.

Example 3.1. Compute the positive realization
(3.5) of the transfer function

ﬁ222+ﬁlz+ﬁ0 _ 2242241
2 vdyz? +diz+d, 20 —0.62+0.112—-0.006

Ty (s)=

The denominator
d(z)=2>-0.622+0.11z—0.006 = (z—0.1)(z=0.2)(z—=0.3) (3.11)

has the real positive zeros z; =0.1, z,=0.2,
z,=0.3 and the matrix 4 is the Schur matrix of
the form

zz 0 0 01 0 0
z, 0]=|1

A=|1
0 1 =z 0 1 03

(3.12)

Note that the polynomial (3.11) satisfies the
conditions of Theorem 2.4.

Using (3.7) and (3.11) we obtain

1

B 1z, zgz TO 1 01 002] 1 0.81 . (3.13)
B={0 1 z+z| |m|=|0 1 03] |2(=|17
0 0 1 m, 0 0 1 1 1

In this case the matrix C has the form
C=[0 0 1]. (3.14)

The positive asymptotically stable realization of
(3.10) is given by (3.12) — (3.14).

It is easy to check that the matrices

(3.15)

0 0 03
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are also the positive asymptotically stable realization
of the transfer function (3.10).

Remark 3.3. If the matrices (3.5) are positive
realization of (3.6) then the matrices

z +14z -0.09z> +2162+088

T(z)=
23 -0.622 +0.11z—0.006

(3.20)

The transfer function (3.20) can be decomposed as
follows

z 1.0 0 0 0
S0 0 0| |0f C=lb b, - bn](3‘1(})"(z) =P(2)+T,(2), (3.21)
A= : : B=|:
0 0 Z 1 0 where
0 0 z, 1
P(z)=F+Fz=2+z,
are also the positive realization of (3.6). )
T _ z7+2z+1 3.22)
Theorem 3.3. Let the matrices (3.5) be a positive p(2)= G

realization of the strictly proper transfer function (3.6)
then the matrices

23 20.622 +0.11z—0.006

The positive realization of T,,(z) given by (3.22)
has been found in Example 3. 1 and it is given by

00 .00 (3.12) - (3.14).
I B Lo 00 1 The conditions of Theorem 3.3 for the existence of
E= [ (; }6 R, N={0 1 0 0|eRla the positive realization of (3.20) are satisfied since in
: Do thiscase £, =2 and B =1.
00 10 Therefore, by Theorem 3.3 the desired positive
1 F o 0 0] 0 realization of the transfer function (3.20) has the form
0 1 0 0 0 -1 317) [1 0 0 0 0 01 0 0 081 0
4=10 0 1 0 0|eR”, B=| 0 |[eR™ 01000 1 02 0 17 0
A P : E=l0 0 1 0 0, 4= 0 1 03 1 0
0 0 0 0 1] 0 00000 0 0 0 1 0
c=[C B, B - pq]egnlf,ﬁ:,ﬂ_cﬁ_l 00O0T1O0 0 0 0 0 1
0
are a positive realization of the transfer function (3.3) 0
if and only if B=lolc=0 011 2].
P eR, for k=0,,...q and z, 20 for ‘01
k=1,..,n (3.18) (3.20)
Proof. Using (3.17) it is easy to verify that
1.7 _F o oTo 4 COMPUTATION OF POSITIVE REALIZATIONS
0 -1 0 -0 -1 OF DESCRIPTOR MIMO SYSTEMS
ClEz—-A]'B=[C P, B -+ P] 0 z -1 0 0|0
o o 0 e In this section the method presented in section 3 will
e A1'F be extended to multi-input multi-output (MIMO)
I linear discrete-time systems.
=[C B, B - P :E[qu—Z]‘§+}’0+P,z+..,+E,z“. . .
: The strictly proper transfer matrix (3.4c) can be
2 (3.19) written in the form with common least row
denominator
Therefore, the matrices (3.17) are the positive B
realization of the transfer function (3.3). o m(2) My, (2)
d,(2) d(2)
Remark 3.4. Note that the positive realization 7,(s)=|_: i My (2) = My 2" b T 2 4 Ty
(3.17) for the descriptor linear systems has the matrix My (@) Mpm ()
—BeR. d,(2) d,(2)

Remark 3.5. The positive realization (3.17) is
asymptotically stable if and only if the matrix
A eRT" is Schur matrix with only nonnegative real
parts of eigenvalues.

Example 3.2. Compute the positive realization
(3.17) of the transfer function
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d(z)=z"+d, 2" +.+d,z+d,, i=1,..p; k=1,.,m

or with common least column denominator



1y, (2) n,,,(2)
d(2) d,(2)
Txp(z) N > ﬁzik(z)zlﬁilxn—lzrkl Fet iy, Z + iy,
i)
d,(2) d, ()

c;’k(z) =z" -%—a?,{,,,lz"’l +...+c§klz+c?k0, i=l..,p; k=1,.,m.

(4.2)

Further we shall consider in details only the first
case (4.1) since the considerations for (4.2) are similar
(dual).

The matriccs A and B of the desired
realization have the forms
A = blockdiag[ 4, 4,1, (4.3a)
where
[z, 0 0 - 0 O]
I z, 0 0 0
1= : eR™, 2, 20
0 0 O z,, 0
10 0 0 1z, |
for i=1,..,p, k=1...n (4.3b)
and
= = by
Bll Blm b.
E _ . . c SRipxml B[k — licz ,
1 ) m
: 3 bikni
=l..,p, k=1...m (4.4)
The entries of the matrices Ek are computed in
the same way as of the matrix B in section 3 using

the equation

B,=Z'M,eR", i=1,.,p, (4.5a)
where
1z, zz, ZjZipZinn
7 = 0 1 z,+z, ZytzZ,totz,
0 O 0 1
i=l.,p, (4.5b)
My
My
M, = . |, i=lL.,p, k=1..m. (4.5¢)
n_/llkn

The matrix C is given by

C = blockdiag[ C C,l
C =

[0 -+ 0 1]eR"™. (4.6)

Theorem 4.1. If the matrices (4.3), (4.4) and (4.6)
are a positive realization of the strictly proper transfer
matrix (4.1) then the matrices

I, 0.0 - 0 0 4 B 0 -0 0
00 0 - 0 0 0 1, 0 -0 0
= w7y " (4 7)
E=|0 I, 0 OOeE}L,A:OOIm-OOetR
0 0 0 - I, 0 00 0 - 01
0
_lm
B=| 0 |e®™,C=[C B, B - PleR, i=n+(g+hm
0

are a positive realization of the transfer matrix (3.3) if
and only if

P e R for k=0,,..,q9 and z, 20,

i=lL..,p, k=1,.,n (4.8)

Proof. The proof is similar to the proof of Theorem
3.2.

From the above considerations we have the
following procedure for computation of the positive
realization (4.7) of the given transfer matrix 7(z).

Procedure 4.1.

Step 1. Decompose the given matrix 7(z) in the
polynomial part (3.4b) and strictly proper part (3.4¢).

Step 2. Compute the zeros wD
=L,...,n; of the denominator dl (Z) 1,..., p
and fmd the matrices (4.3b), (4.3a).

Step 3.Using (4.5b) and (4.5c) compute the matrices
Z., M, and check the conditions (4.5a). If the
conditions (4.5a) are satisfied then there exists
B e R’ and the positive realization of T'(z).

The desired positive realization is given by (4.7).

Example 4.1. Compute the positive realization
(4.7) of the transfer matrix

22°+0.22° +0.66z +0.23

2z —0.4z+0.03
T(z)= (4.9)
322 +0.52° +0.18z +1.12
z*—0.5z+0.06

Using Procedure 4.1 we obtain the following.

Step 1. The matrix (4.9) can be decomposed in the
polynomial part
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P(s) 2 : 4.10
s)=| _|z+ .
3 ) (4.10)
and strictly proper part
z+0.2
2> —-0.42z+0.03
T, (2)= (4.11)
z+1
2> —0.52+0.06
Step 2. The zeros of the first denominator
d(z)=2z"-0.4z+0.03 4.12)
are: z,=0.1, z,=03 and of the second
denominator
d,(z)=2z"-0.52+0.06 (4.13)
are: 221 = 0.2, 7, =03
Therefore, the matrix A has the form
0.1 0 0 0
— |4 0 I 03 0
= _ = (4.14)
0 A4, 0 0 02 O
0 0 I 03
Step 3. In this case
— |B| = |b — |b
B:{_l}, BI:{ “}, BZ:{ 2‘} (4.15a)
B, by, b,,

and using (4.5a) we obtain

o TEHS I
m,| 0 1 |1 1

and

S
afy S [bs VI e
0 1| |my| |0 1 |1] |1
Therefore, the matrix
0.1
_[B7 |1
B=|_ |= (4.16)
2 0.8
1

and the matrix

550

_[c o] fo1o0o0
C = _ = . (4.17)
0 G| 0001

The desired positive realization of (4.9) is given by

100000 01 0 0 0 010
010000 1 03 0 0 1 0
F_[00 1000 4 0 0 02 0 080
looo1o0o0l " 0o 0o 1 03 1 o (418
000000 0 0 10
000010 |0 o0 0 1]
0
0
N ~ o100 21
B=lo| C= .
000132
0

Now let us consider the strictly proper transfer
matrix (4.11) as the matrix with least common column
denominator

T,(s)=

1 {zz +0.32+0.02

., (4.19)
22 =0.622+0.112—0.006| 2> +0.92+0.1

where

d(z)==2>-0.6z>+0.11z2—-0.006 = (z—0.1)(z = 0.2)(z— 0.3) (4.20)

has the zeros: z,=0.1, z,=0.2, z, =0.3.

Therefore, the matrix A has the form

0.1 1 0
A= 0 02 1 4.21)
0 0 03
In this case the matrix B is given by
0
B=|0]. (4.22)
1

Using the dual method to the method for

computation of the matrix B we obtain

_JTo o0 1
C= .
{0.02 0.6 J

Therefore, the desired positive realization of (4.9)
has the form

(4.23)



1 0000 (0.1 1 0 0 0
01000 0 02 00
E=[0 01 0 0L, A=|0 0 03 1 0
00000 0 0 10
00010 |0 o 0o 1] 29
e
0
. .o o 121
B=|0| C= .
| 002 06 1 3 2
_0_

5 CONCLUDING REMARKS

A new method for determination of positive
realizations of transfer matrices of descriptor linear
discrete-time systems has been proposed. Necessary
and sufficient conditions for the existence of the
positive realizations have been established (Theorems
3.1, 3.2 and 4.1). A procedure for computation of the
positive realizations has been proposed and
illustrated by an example (Example 4.1). The
presented method can be extended to fractional
descriptor linear continuous-time discrete-time
systems.

The presented method can be considered as an
extension of the method presented in [8] for
continuous-time systems to the discrete-time systems.
Between the methods we have the following essential
differences:

1 The method presented in this paper can be applied
only to discrete-time linear systems with zeros
satisfying the condition (3.18).

2 For discrete-time systems the matrix B may have
negative entries (see Remark 3.4).
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