PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assay of p-Chlorophenol Compliance Monitoring in Textile Wet Processing Industry Effluent Using Fenton Oxidation Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The textile industries utilize number of dyes, chemicals, and other materials to suffuse the characteristic of fabric qualities. A huge quantity of effluents is produced during the process. However, toxicity from synthetic dyes has become a cause of severe environment concern. Chlorophenols are mostly present in synthetic dyes which are proven carcinogenic and therefore undesirable. A number of techniques were used to remove p-Chlorophenol up to the ZDHC MRSL limit. However, none of them found to be up to mark. Fenton oxidation process was selected for its suitability to degrade the p-Chlorophenol up to 5 ppm or less from the textile wet processing industry effluent. In the present study cotton fiber was selected, as medium considering its common use in textile industry. The impact of Ferrous ion (Fe+2), Hydrogen peroxide (H2O2) and pH on the removal of p-Chlorophenol was examined. The Box-Behnken Design (BBD) of (RSM) was employed to achieve optimum desirable condition for the removal of p-Chlorophenol from effluent. A quadratic model is suggested to relate the independent variables for maximum removal of p-Chlorophenol at the optimal process condition. Results suggest that removal efficiency under the optimum condition [Fe+2] = 6.5×10-3 M, [H2O2] = 2.9×10-2 M, and [pH] = 3.5 was >90% in 15 minutes. It can be summarized that Fenton oxidation process as the promising potential for removal of p-Chlorophenol from textile wet processing industry effluent. This research work helps to address for the general knowledge gap in the textile wet processing industry effluent treatment and provide a plate form for further research.
Rocznik
Strony
108--116
Opis fizyczny
Bibiliogr. 35 poz., rys., tab.
Twórcy
  • Graduate School of Engineering Sciences and Information Technology, FEST, Hamdard University, Madinat al-Hikmah, Hakim Mohammed Said Road, Karachi 74600, Pakistan
  • Department of Mechanical Engineering, FEST, Hamdard University, Madinat al-Hikmah, Hakim Mohammed Said Road, Karachi 74600, Pakistan
  • Department of Mechanical Engineering, FEST, Hamdard University, Madinat al-Hikmah, Hakim Mohammed Said Road, Karachi 74600, Pakistan
  • Department of Mechanical Engineering, Faculty of Engineering & Applied Sciences, DHA Suffa University, Off Khayaban-e-Tufail, Phase 7 Ext Karachi 75500, Pakistan
  • Department of Textile and Clothing, Faculty of Engineering and Technology, National Textile University Karachi Campus, Industrial Area Korangi, Karachi 74900, Pakistan
Bibliografia
  • 1. Alwan, G. 2012. Simulation and optimization of a continuous biochemical reactor. Chem. Process Eng. Res. 5.
  • 2. Aruoja, V., Sihtmäe, M., Dubourguier, H.-C., Kahru, A. 2011. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs. Chemosphere, 84, 1310–1320. doi:https://doi.org/10.1016/j.chemosphere.2011.05.023
  • 3. Brillas, E. 2020. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198
  • 4. Cai, Y., Li, X., Zaidi, A.A., Shi, Y., Zhang, K., Feng, R., Lin, A., Liu, C. 2019a. Effect of hydraulic retention time on pollutants removal from real ship sewage treatment via a pilot-scale air-lift multilevel circulation membrane bioreactor. Chemosphere, 236, 124338. doi:https://doi.org/10.1016/j.chemosphere.2019.07.069
  • 5. Cai, Y., Zaidi, A.A., Sun, P., Shi, Y., Zhang, K., Lin, A. 2019b. Effect of volume loading rate and C/N on ship domestic sewage treatment by two membrane bioreactors. Period. Polytech. Chem. Eng. 64, 328–339. https://doi.org/10.3311/PPch.14672
  • 6. Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J. 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv., 33, 745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003
  • 7. Dąbrowski, A., Podkościelny, P., Hubicki, Z., Barczak, M., 2005. Adsorption of phenolic compounds by activated carbon – a critical review. Chemosphere 58, 1049–1070. https://doi.org/10.1016/j.chemosphere.2004.09.067
  • 8. Dbik, A., El Messaoudi, N., Bentahar, S., El Khomri, M., Lacherai, A., Faska, N., 2022. Optimization of methylene blue adsorption on agricultural solid waste using box-behnken design (BBD) combined with response surface methodology (RSM) modeling. Biointerface Res. Appl. Chem, 12, 4567–4583.
  • 9. Faludi, T., Balogh, C., Serfőző, Z., Molnár-Perl, I., 2015. Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry. Environ. Sci. Pollut. Res. 22, 11966–11974. https://doi.org/10.1007/s11356-015-4734-x
  • 10. Feng, R., Zaidi, A.A., Zhang, K., Shi, Y. 2018. Optimisation of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Period. Polytech. Chem. Eng. 63, 65–72. https://doi.org/10.3311/PPch.12334
  • 11. Igbinosa, E.O., Odjadjare, E.E., Chigor, V.N., Igbinosa, I.H., Emoghene, A.O., Ekhaise, F.O., Igiehon, N.O., Idemudia, O.G. 2013. Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci. World J. 2013, 460215. https://doi.org/10.1155/2013/460215
  • 12. Jing, M., Zhao, H., Jian, L., Pan, C., Dong, Y., Zhu, Y. 2023. Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 449, 131017.
  • 13. Kavitha, C., Vijayasarathi, P., Tamizhdurai, P., R. Mythily, R.M., Mangesh, V.L., 2022. Elimination of lead by biosorption on parthenium stem powder using box-behnken design. South African J. Chem. Eng. 42, 270–279.
  • 14. Kermet-Said, H., Moulai-Mostefa, N. 2022. Modeling and prediction of COD and turbidity removals from dairy wastewaters by Fenton process using RSM and ANN. Biomass Convers. Biorefinery, 1–13.
  • 15. Kuch, B., Azizi, N., Ruiz, M.S.M., Schönberger, H., n.d. The new ZDHC standard generated for sludge in textile wastewater treatment plants. Integr. Best Available Wastewater Manag. Text. Ind. 2018, 155.
  • 16. Lacson, C.F.Z., Lu, M.-C., Huang, Y.-H., 2022. Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate: Its optimization using BBD-RSM and defluoridation mechanism. J. Water Process Eng., 47, 102658.
  • 17. Lucas, M.S., Dias, A.A., Sampaio, A., Amaral, C., Peres, J.A., 2007. Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Res. 41, 1103–1109. https://doi.org/10.1016/j.watres.2006.12.013
  • 18. Masouleh, S.Y., Mozaffarian, M., Dabir, B., Ramezani, S.F., 2022. COD and ammonia removal from landfill leachate by UV/PMS/Fe2+ process: ANN/RSM modeling and optimization. Process Saf. Environ. Prot., 159, 716–726.
  • 19. Naseer, M.N., Zaidi, A.A., Khan, H., Kumar, S., Owais, Mt., Abdul Wahab, Y., Dutta, K., Jaafar, J., Hamizi, N.A., Islam, M.A., 2021. Statistical modeling and performance optimization of a two-chamber microbial fuel cell by response surface methodology. Catalysts, 2021, 11, 1202.
  • 20. Nguyen, V.-H., Smith, S.M., Wantala, K., Kajitvichyanukul, P., 2020. Photocatalytic remediation of persistent organic pollutants (POPs): a review. Arab. J. Chem., 13, 8309–8337.
  • 21. Olaniran, A.O., Igbinosa, E.O., 2011. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009
  • 22. Patra, A.K., Pariti, S.R.K. 2022. Restricted substances for textiles. Text. Prog., 54, 1–101.
  • 23. Pera-Titus, M., Garcı́a-Molina, V., Baños, M.A., Giménez, J., Esplugas, S., 2004. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B Environ. 47, 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010
  • 24. Soto, M.L., Moure, A., Domínguez, H., Parajó, J.C., 2011. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng., 105, 1–27. doi:https://doi.org/10.1016/j.jfoodeng.2011.02.010
  • 25. Titchou, F.E., Zazou, H., Afanga, H., El Gaayda, J., Ait Akbour, R., Nidheesh, P.V., Hamdani, M., 2021. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process. - Process Intensif., 169, 108631. https://doi.org/10.1016/j.cep.2021.108631
  • 26. Vanhulle, S., Trovaslet, M., Enaud, E., Lucas, M., Taghavi, S., van der Lelie, D., van Aken, B., Foret, M., Onderwater, R.C.A., Wesenberg, D., Agathos, S.N., Schneider, Y.-J., Corbisier, A.-M., 2008. Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environ. Sci. Technol., 42, 584–589. https://doi.org/10.1021/es071300k
  • 27. Wang, X., Li, C., Li, Z., Yu, G., Wang, Y. 2019. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 168, 45–52. https://doi.org/10.1016/j.ecoenv.2018.10.022
  • 28. Wei, D., Zhao, C., Khan, A., Sun, L., Ji, Y., Ai, Y., Wang, X. 2019. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study. Chem. Eng. J. 375, 121964. https://doi.org/10.1016/j.cej.2019.121964
  • 29. Yates, L.A., Aandahl, Z., Richards, S.A., Brook, B.W., 2023. Cross validation for model selection: a review with examples from ecology. Ecol. Monogr., 93, e1557.
  • 30. Zahmatkesh, S., Far, S.S., Sillanpää, M. 2022. RSM-D-optimal modeling approach for COD removal from low strength wastewater by microalgae, sludge, and activated carbon-case study mashhad. J. Hazard. Mater. Adv., 7, 100110.
  • 31. Zaidi, A.A., Khan, S.Z., Naseer, M.N., Almohammadi, H., Asif, M., Wahab, Y.A., Islam, M.A., Johan, M.R., Hussin, H., 2023. Optimization of cobalt nanoparticles for biogas enhancement from green algae using response surface methodology. Period. Polytech. Chem. Eng.
  • 32. Zaidi, A.A., Khan, S.Z., Shi, Y. 2021. Optimization of nickel nanoparticles concentration for biogas enhancement from green algae anaerobic digestion. Mater. Today Proc., 39, 1025–1028. https://doi.org/10.1016/j.matpr.2020.04.762
  • 33. Zhang, Y., Shaad, K., Vollmer, D., Ma, C. 2021. Treatment of textile wastewater using advanced oxidation processes— A critical review. Water. https://doi.org/10.3390/w13243515
  • 34. Zhen, G., Lu, X., Kato, H., Zhao, Y., Li, Y.-Y. 2017. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev., 69, 559–577. https://doi.org/10.1016/j.rser.2016.11.187
  • 35. Zhou, Yanbo, Lu, J., Zhou, Yi, Liu, Y. 2019. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut., 252, 352–365. https://doi.org/10.1016/j.envpol.2019.05.072
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83be4631-7226-4cfa-9b0d-6719bc5991fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.