PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrocatalytical Properties of Palladium-Decorated Cobalt Coatings Obtained by Electrodeposition and Galvanic Displacment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the studies on the electrochemical process of thin palladium layers formation onto electrodeposited cobalt coatings. The suggested methodology consists of the preparation of thick and smooth cobalt substrate via galvanostatic electrodeposition. Cobalt coatings were prepared under different cathodic current density conditions from acidic bath containing cobalt sulphate and addition of boric acid. Obtained cobalt layers were analyzed by x-ray diffraction to determine their phase composition. Freshly prepared cobalt coatings were modificated by the galvanic displacement method in PdCl2 solution, to obtain smooth and compact Pd layer. The comparison of electrocatalytic properties of Co coatings with Co/Pd ones enabled to determine the influence of Palladium presence in cathodic deposits on the hydrogen evolution process.
Twórcy
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, Krakow, Poland
Bibliografia
  • [1] D. Kutyła, K. Kołczyk, R. Kowalik, P. Żabiński, Electrochemical deposition of ruthenium and cobalt-ruthenium alloys from acidic chloride ions containing baths, Arch. Metall. Mater. 61 (2016). doi:10.1515/amm-2016-0256.
  • [2] M. J. Fesharaki, G. R. Nabiyouni, Anomalous codeposition of cobalt and ruthenium from chloride - sulfate baths, 715-722 (2012) doi:10.1007/s10008-011-1416-6.
  • [3] P. Juzikis, L. Gudavičiute, A. Messmer, M. U. Kittel, Electrodeposition of Ru/Co compositionally modulated multilayers, J. Appl. Electrochem. 27, 991-994 (1997).
  • [4] K. Mech, J. Mech, P. Zabinski, R. Kowalik, M. Wojnicki, Electrochemical deposition of alloys in Ru3+–Co2+–Cl−–H2O system, J. Electroanal. Chem. 748, 76-81 (2015). doi:10.1016/j.jelechem.2015.04.022.
  • [5] O. Aaboubi, J. Douglade, P. Zabinski, J.P. Chopart, Magnetic field effect on molybdenum-based alloys, Magnetohydrodynamics 48, 271-278 (2012).
  • [6] P. Żabiński, K. Mech, R. Kowalik, Co-Mo and Co-Mo-C Alloys Deposited in a Magnetic Field of High Intensity and their Electrocatalytic Properties, Arch. Metall. Mater. 57, 127-133 (2012). doi:10.2478/v10172-012-0001-z.
  • [7] F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review, Int. J. Hydrogen Energy 40, 256-274 (2015). doi:10.1016/j.ijhydene. 2014.10.109.
  • [8] G. Yar-Mukhamedova, M. Ved, N. Sakhnenko, T. Nenastina, Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten, Appl. Surf. Sci. 445, 298-307 (2018). doi:10.1016/j.apsusc.2018.03.171.
  • [9] M. Abdolmaleki, A. Bodaghi, J. Hosseini, S. Jamehbozorgi, Preparation of nanostructured Co-Mo alloy electrodes and investigation of their electrocatalytic activity for hydrazine oxidation in alkaline medium, J. Chinese Chem. Soc. (2018). doi:10.1002/jccs.201700344.
  • [10] P. Żabiński, K. Mech, R. Kowalik, Electrocatalytically active Co-W and Co-W-C alloys electrodeposited in a magnetic field, Electrochim. Acta. 104, 542-548 (2013). doi:10.1016/j.electacta.2012.11.047.
  • [11] K. Mech, G. Boczkal, P. Pałka, P. Żabiński, R. Kowalik, Synthesis of Co-Pd alloys by co-electroreduction of aquachloro-cobalt (II) and palladium (II) complexes, J. Solid State Electrochem. 18, 3121-3127 (2014). doi:10.1007/s10008-013-2363-1.
  • [12] K. Mech, P. Żabiński, R. Kowalik, T. Tokarski, K. Fitzner, Electrodeposition of Co-Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction, J. Appl. Electrochem. 44, 97-103 (2013). doi:10.1007/s10800-013-0605-7.
  • [13] S. Ambrozik, B. Rawlings, N. Vasiljevic, N. Dimitrov, Metal deposition via electroless surface limited redox replacement, Electrochem. Commun. 44, 19-22 (2014). doi:10.1016/j.elecom.2014.04.005.
  • [14] N. Dimitrov, Recent Advances in the Growth of Metals, Alloys, and Multilayers by Surface Limited Redox Replacement (SLRR) Based Approaches, Electrochim. Acta. 209, 599-622 (2016). doi:10.1016/j.electacta.2016.05.115.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83bc0f5e-cdae-41be-9b6e-9e3cbf8bdd13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.