PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trajectory planning of the humanoid manipulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of planning a collision-free trajectory for a humanoid manipulator mounted on a rail system. The task of the robot is to move its end-effectors from the current position to the given final location in the workspace. The method is based on a redundancy resolution at the velocity level. In addition to this primary task, secondary objectives are also taken into account. The motion of the robot is planned in order to maximize a manipulability measure in purpose of avoiding manipulator singularities. State inequality constraints resulting from collision avoidance conditions are also considered. A computer example involving a humanoid manipulator operating in a three dimensional task space is also presented.
Rocznik
Strony
591--602
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
  • University of Zielona Góra Institute of Mechanical Engineering and Machine Operation Licealna 9, 65-417 Zielona Góra, POLAND
autor
  • University of Zielona Góra Institute of Mechanical Engineering and Machine Operation Licealna 9, 65-417 Zielona Góra, POLAND
Bibliografia
  • [1] Harada K., Yoshida E. and Yokoi K. (2014): Motion Planning for Humanoid Robots. Springer Publishing Company, Incorporated.
  • [2] Caccavale F., Lippiello V., Muscio G., Pierri F., Ruggiero F. and Villani L. (2011): Kinematic control with force feedback for a redundant bimanual manipulation system. IEEE International Conference on Intelligent Robots and Systems, No.6048549, pp.4194-4200.
  • [3] Caccavale F., Lippiello V., Muscio G., Pierri F., Ruggiero F. and Villani L. (2013): Grasp planning and parallel control of a redundant dual-arm/hand manipulation system. Robotica, vol.31, No.7, pp.1169-1194.
  • [4] Vahrenkamp N., Asfour T., Metta G., Sandini G. and Dillmann R. (2012): Manipulability analysis. 12th IEEERAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, pp.568-573.
  • [5] Jamisola R.S., Kormushev P.S., Roberts R.G. and Caldwell D.G. (2016): Task-space modular dynamics for dualarms expressed through a relative Jacobian. Journal of Intelligent and Robotic Systems: Theory and Applications, vol.83, No.2, pp.205-218.
  • [6] Dietrich A., Wimböck T. and Albu-Schäffer A. (2011): Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. International Conference on Intelligent Robots and Systems, San Francisco, CA, pp.3199-3206.
  • [7] Caputo A.C., Pelagagge P.M., and Salini P. (2018): Economic comparison of manual and automation-assisted kitting systems. IFAC-PapersOnLine, vol.51, No.11, pp.1482-1487.
  • [8] Boudella M.E.A., Sahin E. and Dallery Y. (2017): Modeling kitting operations in a semi-robotic environment. 7-th IESM Conference.
  • [9] Patalas-Maliszewska J. and Krebs I. (2016): A model of the tacit knowledge transfer support tool: CKnow-board. International Conference on Information and Software Technologies, Springer, Cham, pp.30-41.
  • [10] Craig J.J. (1989): Introduction to Robotics. Cambridge, Massachusetts: Addison Wesley.
  • [11] Yoshikawa T. (1985): Manipulability of robotic mechanisms. – International Journal of Robotics Research, vol.4, No.2, pp.3-9.
  • [12] Siciliano B., Sciavicco L., Villani L. and Oriolo G. (2008): Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated.
  • [13] Pajak I. (2019): Real-time trajectory generation methods for cooperating mobile manipulators subject to state and control constraints. Journal of Intelligent and Robotic Systems: Theory and Applications, vol.93, No.3, pp.649-668.
  • [14] Pajak G. (2017): Trajectory planning for mobile manipulators subject to control constraints. 11th International Workshop on Robot Motion and Control, pp.117-122.
  • [15] Pajak G. and Pajak I. (2014): Motion planning for mobile surgery assistant. Acta Bioeng. Biomech., vol.16, No.2, pp.11-20.
  • [16] Dietrich A., Bussmann K., Petit F., Kotyczka P., Ott C., Lohmann B. and Albu-Schäffer A. (2016): Whole-body impedance control of wheeled mobile manipulators: Stability analysis and experiments on the humanoid robot Rollin’ Justin. Autonomous Robots, vol.40, No.3, pp.505-517.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83bb8ab2-6361-4906-8d37-bed2d5f4f1ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.