Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Presented paper shows the mathematical and numerical approaches for modelling of binary alloy solidification solved by the Finite Element Method (FEM). The phenomenon of shrinkage cavities formation process is included in the numerical model. Multiple macroscopic cavities can be modelled within the single casting volume. Solid, liquid and gaseous phases with different material properties are taken into account during solidification process. Mathematical model uses the differential equation of heat diffusion. Modification of specific heat is used to describe the heat releasing during liquid-solid phase change. Numerical procedure of shrinkage cavities evolution is based on the recognition of non-connected liquid volumes and local shrinkage computation in the each of them. The recognition is done by the selection of sets of interconnected nodes containing liquid phase in the finite element mesh. Original computer program was developed to perform calculation process. Obtained results of temperature and shrinkage cavities distributions are presented and discussed in details.
Czasopismo
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland \
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland
Bibliografia
- [1] Pequet, Ch., Rappaz, M. & Gremaud, M. (2002). Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloys. Metallurgical and Materials Transactions A. 33(7), 2095-2106.
- [2] Hajkowski, J., Roquet, P., Khamashta, M., Codina, E. & Ignaszak, Z. (2017). Validation tests of prediction modules of shrinkage defects in cast iron sample. Archives of Foundry Engineering. 17(1), 57-66. DOI: 10.1515/afe-2017-0011.
- [3] Campbell, J. (2003). Castings, (2nd ed.). Oxford: Butterworth-Heinemann.
- [4] Flemings, M.C. (1974). The solidification processing. New York: Mc Graw-Hill.
- [5] Jabur, A.S. & Kushnaw, F.M. (2017). Casting simulation and prediction of shrinkage cavities. Journal of Applied & Computational Mathematics. 6(4), 7. DOI: 10.4172/2168-9679.1000371.
- [6] Kim, C.J. & Ro, S.T. (1993). Shrinkage formation during the solidification process in an open rectangular cavity. Journal of Heat Transfer. 115(4), 1078-1081. DOI: 10.1115/ 1.2911369.
- [7] Zhang, C., Bao, Y., Wang, M. & Zhang, L. (2016). Shrinkage porosity criterion and its application to a 5.5 ton steel ingot. Archives of Foundry Engineering. 16(2), 27-32. DOI: 10.1515/afe-2016-0021.
- [8] Wu, M., Ludwig, A. & Kharicha, A. (2017). A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot. Applied Mathematical Modelling. 41, 102-120. DOI: dx.doi.org/10.1016 /j.apm.2016.08.023.
- [9] Mochnacki, B., Suchy. J.S. (1993). Modeling and simulation of solidification of castings. Warsaw: PWN. (in Polish).
- [10] Skrzypczak, T., Węgrzyn-Skrzypczak, E. & Sowa, L. (2019). Numerical model of solidification process of Fe-C alloy taking into account the phenomenon of shrinkage cavity formation. MATEC Web of Conferences. 254, 7. DOI: https://doi.org/10.1051/matecconf/201925402009
- [11] Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering. 79(11), 1309-1331.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83b1f8a6-0185-4ea2-91a8-2ef7f7efc511